The Extreme Value Theory and Copulas as a Tool to Measure Market Risk
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F12%3A10109686" target="_blank" >RIV/00216208:11230/12:10109686 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Extreme Value Theory and Copulas as a Tool to Measure Market Risk
Popis výsledku v původním jazyce
Assessing the extreme events is crucial in financial risk management. All risk managers and financial institutions want to know the risk of their portfolio under rare events scenarios. We illustrate a multivariate market risk estimating method which employs Monte Carlo simulations to estimate Value-at-Risk (VaR) for a portfolio of 4 stock exchange indexes from Central Europe. The method uses the non-parametric empirical distribution to capture small risks and the parametric Extreme Value Theory to capture large and rare risks. We compare estimates of this method with historical simulation and variance-covariance method under low and high volatility samples of data. In general historical simulation method gives higher estimates of VaR for extreme events, while variance-covariance lower. The method that we illustrate gives a result in between the two because it considers historical performance of the stocks and also corrects for the heavy tails of the distribution. We conclude that the e
Název v anglickém jazyce
The Extreme Value Theory and Copulas as a Tool to Measure Market Risk
Popis výsledku anglicky
Assessing the extreme events is crucial in financial risk management. All risk managers and financial institutions want to know the risk of their portfolio under rare events scenarios. We illustrate a multivariate market risk estimating method which employs Monte Carlo simulations to estimate Value-at-Risk (VaR) for a portfolio of 4 stock exchange indexes from Central Europe. The method uses the non-parametric empirical distribution to capture small risks and the parametric Extreme Value Theory to capture large and rare risks. We compare estimates of this method with historical simulation and variance-covariance method under low and high volatility samples of data. In general historical simulation method gives higher estimates of VaR for extreme events, while variance-covariance lower. The method that we illustrate gives a result in between the two because it considers historical performance of the stocks and also corrects for the heavy tails of the distribution. We conclude that the e
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bulletin of the Czech Econometric Society
ISSN
1212-074X
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
29
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
21
Strana od-do
70-90
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—