Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Modelování závislostí ve finančním managementu

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F04274644%3A_____%2F18%3A%230000352" target="_blank" >RIV/04274644:_____/18:#0000352 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    čeština

  • Název v původním jazyce

    Modelování závislostí ve finančním managementu

  • Popis výsledku v původním jazyce

    Odhad přesné hodnoty rizika investičního portfolia má zásadní význam v kontextu řízení tržních rizik. V rámci řízení portfolií je velmi důležité správné pochopení struktury závislostí mezi aktivy obsaženými v portfoliu. Modelování závislostí mezi akciovými výnosy je komplexním úkolem, a to především, když výsledná rozdělení portfoliových výnosů nejsou gaussovská neboli normální. V těchto případech se jako jeden z možných nástrojů pro popis závislostí jeví kopule. Cílem tohoto článku je nejprve zkoumat vliv různých kopul na přesnost VaR odhadů a následně nalézt model vhodný při aplikaci na akciové portfolio. Celkově docházíme k závěru, že, že přístupy založené na AR-GJR-GARCH modelu s aplikací symetrické Studentovy a Normální kopule a dále s aplikací asymetrické Claytonovy a symetrické Frankovy kopule překonávají tradiční historickou simulaci a varianční-kovarianční metodu pro odhad VaR.

  • Název v anglickém jazyce

    Modeling Dependencies in Financial Management

  • Popis výsledku anglicky

    Estimation of the accurate value of the investment portfolio risk is essential in the context of market risk management. In portfolio management, it is very important to understand the structure of dependencies between assets in the portfolio. Modeling dependencies between stock returns is a complex task, especially when the resulting portfolio allocation is not Gaussian or normal. The copula appears as one of the possible tools for describing dependencies in these cases. The aim of this article is to first examine the impact of the different dots on the accuracy of VaR estimates and subsequently to find a model suitable for application to the stock portfolio. Overall, we conclude that AR-GJR-GARCH based approaches with the application of the symmetrical Student and Normal copulas and the application of the asymmetric Clayton and symmetric Frank copulas overcome the traditional historical simulation and the variance-covariance method.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    50200 - Economics and Business

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Sting

  • ISSN

    1805-1391

  • e-ISSN

    1805-6873

  • Svazek periodika

    Neuveden

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    23

  • Strana od-do

    22-44

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus