Estimating the Model with Fixed and Random Effects by a Robust Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F15%3A10312391" target="_blank" >RIV/00216208:11230/15:10312391 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11009-014-9432-5" target="_blank" >http://dx.doi.org/10.1007/s11009-014-9432-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11009-014-9432-5" target="_blank" >10.1007/s11009-014-9432-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating the Model with Fixed and Random Effects by a Robust Method
Popis výsledku v původním jazyce
Regression model with fixed and random effects estimated by modified versions of the Ordinary Least Squares (OLS) is a standard tool of panel data analysis. However, it is vulnerable to the bad effects of influential observations (contamination and/or atypical observations). The paper offers robustified versions of the classical methods for this framework. The robustification is carried out by the same idea which was employed when robustifying OLS, it is the idea of weighting down the large order statistics of squared residuals. In contrast to the approach based on the M-estimators this approach does not need the studentization of residuals to reach the scale- and regression-equivariance of estimator in question. Moreover, such approach is not vulnerable with respect the inliers. The numerical study reveals the reliability of the respective algorithm. The results of this study were collected in a file which is possible to find on web, address is given below. Patterns of these results w
Název v anglickém jazyce
Estimating the Model with Fixed and Random Effects by a Robust Method
Popis výsledku anglicky
Regression model with fixed and random effects estimated by modified versions of the Ordinary Least Squares (OLS) is a standard tool of panel data analysis. However, it is vulnerable to the bad effects of influential observations (contamination and/or atypical observations). The paper offers robustified versions of the classical methods for this framework. The robustification is carried out by the same idea which was employed when robustifying OLS, it is the idea of weighting down the large order statistics of squared residuals. In contrast to the approach based on the M-estimators this approach does not need the studentization of residuals to reach the scale- and regression-equivariance of estimator in question. Moreover, such approach is not vulnerable with respect the inliers. The numerical study reveals the reliability of the respective algorithm. The results of this study were collected in a file which is possible to find on web, address is given below. Patterns of these results w
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-01930S" target="_blank" >GA13-01930S: Robustní procedury pro nestandardní situace, jejich diagnostika a implementace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Methodology and Computing in Applied Probability
ISSN
1387-5841
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
999-1014
Kód UT WoS článku
000365182300011
EID výsledku v databázi Scopus
2-s2.0-84947488277