Instrumental weighted variables under heteroscedasticity Part I - Consistency
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F17%3A10360472" target="_blank" >RIV/00216208:11230/17:10360472 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.14736/kyb-2017-1-0001" target="_blank" >http://dx.doi.org/10.14736/kyb-2017-1-0001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2017-1-0001" target="_blank" >10.14736/kyb-2017-1-0001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Instrumental weighted variables under heteroscedasticity Part I - Consistency
Popis výsledku v původním jazyce
The proof of consistency instrumental weighted variables, the robust version of the classical instrumental variables is given. It is proved that all solutions of the corresponding normal equations are contained, with high probability, in a ball, the radius of which can be selected - asymptotically - arbitrarily small. Then also root n-consistency is proved. An extended numerical study (the Part II of the paper) offers a picture of behavior of the estimator for finite samples under various types and levels of contamination as well as various extent of heteroscedasticity. The estimator in question is compared with two other estimators of the type of "robust instrumental variables" and the results indicate that our estimator gives comparatively good results and for some situations it is better. The discussion on a way of selecting the weights is also offered. The conclusions show the resemblance of our estimator with the M-estimator with Hampel's psi-function. The difference is that our estimator does not need the studentization of residuals (which is not a simple task) to be scale- and regression-equivariant while the M-estimator does. So the paper demonstrates that we can directly compute - moreover by a quick algorithm (reliable and reasonably quick even for tens of thousands of observations) - the scale- and the regression-equivariant estimate of regression coefficients.
Název v anglickém jazyce
Instrumental weighted variables under heteroscedasticity Part I - Consistency
Popis výsledku anglicky
The proof of consistency instrumental weighted variables, the robust version of the classical instrumental variables is given. It is proved that all solutions of the corresponding normal equations are contained, with high probability, in a ball, the radius of which can be selected - asymptotically - arbitrarily small. Then also root n-consistency is proved. An extended numerical study (the Part II of the paper) offers a picture of behavior of the estimator for finite samples under various types and levels of contamination as well as various extent of heteroscedasticity. The estimator in question is compared with two other estimators of the type of "robust instrumental variables" and the results indicate that our estimator gives comparatively good results and for some situations it is better. The discussion on a way of selecting the weights is also offered. The conclusions show the resemblance of our estimator with the M-estimator with Hampel's psi-function. The difference is that our estimator does not need the studentization of residuals (which is not a simple task) to be scale- and regression-equivariant while the M-estimator does. So the paper demonstrates that we can directly compute - moreover by a quick algorithm (reliable and reasonably quick even for tens of thousands of observations) - the scale- and the regression-equivariant estimate of regression coefficients.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-01930S" target="_blank" >GA13-01930S: Robustní procedury pro nestandardní situace, jejich diagnostika a implementace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
—
Svazek periodika
53
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
25
Strana od-do
1-25
Kód UT WoS článku
000400203500001
EID výsledku v databázi Scopus
2-s2.0-85017012016