Networks of volatility spillovers among stock markets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F18%3A10363576" target="_blank" >RIV/00216208:11230/18:10363576 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/18:00487923
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.physa.2017.08.123" target="_blank" >http://dx.doi.org/10.1016/j.physa.2017.08.123</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physa.2017.08.123" target="_blank" >10.1016/j.physa.2017.08.123</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Networks of volatility spillovers among stock markets
Popis výsledku v původním jazyce
In our network analysis of 40 developed, emerging and frontier stock markets during the 2006-2014 period, we describe and model volatility spillovers during both the global financial crisis and tranquil periods. The resulting market interconnectedness is depicted by fitting a spatial model incorporating several exogenous characteristics. We document the presence of significant temporal proximity effects between markets and somewhat weaker temporal effects with regard to the US equity market - volatility spillovers decrease when markets are characterized by greater temporal proximity. Volatility spillovers also present a high degree of interconnectedness, which is measured by high spatial autocorrelation. This finding is confirmed by spatial regression models showing that indirect effects are much stronger than direct effects; i.e., market-related changes in 'neighboring' markets (within a network) affect volatility spillovers more than changes in the given market alone, suggesting that spatial effects simply cannot be ignored when modeling stock market relationships. Our results also link spillovers of escalating magnitude with increasing market size, market liquidity and economic openness.
Název v anglickém jazyce
Networks of volatility spillovers among stock markets
Popis výsledku anglicky
In our network analysis of 40 developed, emerging and frontier stock markets during the 2006-2014 period, we describe and model volatility spillovers during both the global financial crisis and tranquil periods. The resulting market interconnectedness is depicted by fitting a spatial model incorporating several exogenous characteristics. We document the presence of significant temporal proximity effects between markets and somewhat weaker temporal effects with regard to the US equity market - volatility spillovers decrease when markets are characterized by greater temporal proximity. Volatility spillovers also present a high degree of interconnectedness, which is measured by high spatial autocorrelation. This finding is confirmed by spatial regression models showing that indirect effects are much stronger than direct effects; i.e., market-related changes in 'neighboring' markets (within a network) affect volatility spillovers more than changes in the given market alone, suggesting that spatial effects simply cannot be ignored when modeling stock market relationships. Our results also link spillovers of escalating magnitude with increasing market size, market liquidity and economic openness.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP402%2F12%2FG097" target="_blank" >GBP402/12/G097: DYME-Dynamické modely v ekonomii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica A: Statistical Mechanics and its Applications
ISSN
0378-4371
e-ISSN
—
Svazek periodika
490
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
1555-1574
Kód UT WoS článku
000415912900140
EID výsledku v databázi Scopus
2-s2.0-85030123221