Sufficient Conditions for Metric Subregularity of Constraint Systems with Applications to Disjunctive and Ortho-Disjunctive Programs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F22%3A10420128" target="_blank" >RIV/00216208:11230/22:10420128 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aUI_99_FKm" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=aUI_99_FKm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11228-020-00569-7" target="_blank" >10.1007/s11228-020-00569-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sufficient Conditions for Metric Subregularity of Constraint Systems with Applications to Disjunctive and Ortho-Disjunctive Programs
Popis výsledku v původním jazyce
This paper is devoted to the study of the metric subregularity constraint qualification for general optimization problems, with the emphasis on the nonconvex setting. We elaborate on notions of directional pseudo- and quasi-normality, recently introduced by Bai et al., which combine the standard approach via pseudo- and quasi-normality with modern tools of directional variational analysis. We focus on applications to disjunctive programs, where (directional) pseudo-normality is characterized via an extremal condition. This, in turn, yields efficient tools to verify pseudo-normality and the metric subregularity constraint qualification, which include, but are not limited to, Robinson's result on polyhedral multifunctions and Gfrerer's second-order sufficient condition for metric subregularity. Finally, we refine our study by defining the new class of ortho-disjunctive programs which comprises prominent optimization problems such as mathematical programs with complementarity, vanishing or switching constraints.
Název v anglickém jazyce
Sufficient Conditions for Metric Subregularity of Constraint Systems with Applications to Disjunctive and Ortho-Disjunctive Programs
Popis výsledku anglicky
This paper is devoted to the study of the metric subregularity constraint qualification for general optimization problems, with the emphasis on the nonconvex setting. We elaborate on notions of directional pseudo- and quasi-normality, recently introduced by Bai et al., which combine the standard approach via pseudo- and quasi-normality with modern tools of directional variational analysis. We focus on applications to disjunctive programs, where (directional) pseudo-normality is characterized via an extremal condition. This, in turn, yields efficient tools to verify pseudo-normality and the metric subregularity constraint qualification, which include, but are not limited to, Robinson's result on polyhedral multifunctions and Gfrerer's second-order sufficient condition for metric subregularity. Finally, we refine our study by defining the new class of ortho-disjunctive programs which comprises prominent optimization problems such as mathematical programs with complementarity, vanishing or switching constraints.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Set-Valued Analysis
ISSN
0927-6947
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
35
Strana od-do
143-177
Kód UT WoS článku
000605112400001
EID výsledku v databázi Scopus
2-s2.0-85099045690