Learnability of state spaces of physical systems is undecidable
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F24%3A10485953" target="_blank" >RIV/00216208:11230/24:10485953 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6ha4DS1VHr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6ha4DS1VHr</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jocs.2024.102452" target="_blank" >10.1016/j.jocs.2024.102452</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learnability of state spaces of physical systems is undecidable
Popis výsledku v původním jazyce
Despite an increasing role of machine learning in science, there is a lack of results on limits of empirical exploration aided by machine learning. In this paper, we construct one such limit by proving undecidability of learnability of state spaces of physical systems. We characterize state spaces as binary hypothesis classes of the computable Probably Approximately Correct learning framework. This leads to identifying the first limit for learnability of state spaces in the agnostic setting. Further, using the fact that finiteness of the combinatorial dimension of hypothesis classes is undecidable, we derive undecidability for learnability of state spaces as well. Throughout the paper, we try to connect our formal results with modern neural networks. This allows us to bring the limits close to the current practice and make a first step in connecting scientific exploration aided by machine learning with results from learning theory.
Název v anglickém jazyce
Learnability of state spaces of physical systems is undecidable
Popis výsledku anglicky
Despite an increasing role of machine learning in science, there is a lack of results on limits of empirical exploration aided by machine learning. In this paper, we construct one such limit by proving undecidability of learnability of state spaces of physical systems. We characterize state spaces as binary hypothesis classes of the computable Probably Approximately Correct learning framework. This leads to identifying the first limit for learnability of state spaces in the agnostic setting. Further, using the fact that finiteness of the combinatorial dimension of hypothesis classes is undecidable, we derive undecidability for learnability of state spaces as well. Throughout the paper, we try to connect our formal results with modern neural networks. This allows us to bring the limits close to the current practice and make a first step in connecting scientific exploration aided by machine learning with results from learning theory.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50601 - Political science
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004595" target="_blank" >EH22_008/0004595: Za hranice bezpečnosti: role konfliktu v posilování odolnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational Science
ISSN
1877-7503
e-ISSN
1877-7511
Svazek periodika
83
Číslo periodika v rámci svazku
December 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
1-7
Kód UT WoS článku
001333517500001
EID výsledku v databázi Scopus
2-s2.0-85205572580