Learnability can be undecidable
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00500071" target="_blank" >RIV/67985840:_____/19:00500071 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1038/s42256-018-0002-3" target="_blank" >http://dx.doi.org/10.1038/s42256-018-0002-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s42256-018-0002-3" target="_blank" >10.1038/s42256-018-0002-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learnability can be undecidable
Popis výsledku v původním jazyce
The mathematical foundations of machine learning play a key role in the development of the field. They improve our understanding and provide tools for designing new learning paradigms. The advantages of mathematics, however, sometimes come with a cost. Gödel and Cohen showed, in a nutshell, that not everything is provable. Here we show that machine learning shares this fate. We describe simple scenarios where learnability cannot be proved nor refuted using the standard axioms of mathematics. Our proof is based on the fact the continuum hypothesis cannot be proved nor refuted. We show that, in some cases, a solution to the ‘estimating the maximum’ problem is equivalent to the continuum hypothesis. The main idea is to prove an equivalence between learnability and compression.
Název v anglickém jazyce
Learnability can be undecidable
Popis výsledku anglicky
The mathematical foundations of machine learning play a key role in the development of the field. They improve our understanding and provide tools for designing new learning paradigms. The advantages of mathematics, however, sometimes come with a cost. Gödel and Cohen showed, in a nutshell, that not everything is provable. Here we show that machine learning shares this fate. We describe simple scenarios where learnability cannot be proved nor refuted using the standard axioms of mathematics. Our proof is based on the fact the continuum hypothesis cannot be proved nor refuted. We show that, in some cases, a solution to the ‘estimating the maximum’ problem is equivalent to the continuum hypothesis. The main idea is to prove an equivalence between learnability and compression.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nature Machine Intelligence
ISSN
2522-5839
e-ISSN
—
Svazek periodika
1
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
5
Strana od-do
44-48
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—