Determination of "Neutral"-"Pain", "Neutral"-"Pleasure", and "Pleasure"-"Pain" Affective State Distances by Using AI Image Analysis of Facial Expressions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11240%2F22%3A10453964" target="_blank" >RIV/00216208:11240/22:10453964 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/22:10453964
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=g8xJZm5kdf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=g8xJZm5kdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/technologies10040075" target="_blank" >10.3390/technologies10040075</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Determination of "Neutral"-"Pain", "Neutral"-"Pleasure", and "Pleasure"-"Pain" Affective State Distances by Using AI Image Analysis of Facial Expressions
Popis výsledku v původním jazyce
(1) Background: In addition to verbalizations, facial expressions advertise one's affective state. There is an ongoing debate concerning the communicative value of the facial expressions of pain and of pleasure, and to what extent humans can distinguish between these. We introduce a novel method of analysis by replacing human ratings with outputs from image analysis software. (2) Methods: We use image analysis software to extract feature vectors of the facial expressions neutral, pain, and pleasure displayed by 20 actresses. We dimension-reduced these feature vectors, used singular value decomposition to eliminate noise, and then used hierarchical agglomerative clustering to detect patterns. (3) Results: The vector norms for pain-pleasure were rarely less than the distances pain-neutral and pleasure-neutral. The pain-pleasure distances were Weibull-distributed and noise contributed 10% to the signal. The noise-free distances clustered in four clusters and two isolates. (4) Conclusions: AI methods of image recognition are superior to human abilities in distinguishing between facial expressions of pain and pleasure. Statistical methods and hierarchical clustering offer possible explanations as to why humans fail. The reliability of commercial software, which attempts to identify facial expressions of affective states, can be improved by using the results of our analyses.
Název v anglickém jazyce
Determination of "Neutral"-"Pain", "Neutral"-"Pleasure", and "Pleasure"-"Pain" Affective State Distances by Using AI Image Analysis of Facial Expressions
Popis výsledku anglicky
(1) Background: In addition to verbalizations, facial expressions advertise one's affective state. There is an ongoing debate concerning the communicative value of the facial expressions of pain and of pleasure, and to what extent humans can distinguish between these. We introduce a novel method of analysis by replacing human ratings with outputs from image analysis software. (2) Methods: We use image analysis software to extract feature vectors of the facial expressions neutral, pain, and pleasure displayed by 20 actresses. We dimension-reduced these feature vectors, used singular value decomposition to eliminate noise, and then used hierarchical agglomerative clustering to detect patterns. (3) Results: The vector norms for pain-pleasure were rarely less than the distances pain-neutral and pleasure-neutral. The pain-pleasure distances were Weibull-distributed and noise contributed 10% to the signal. The noise-free distances clustered in four clusters and two isolates. (4) Conclusions: AI methods of image recognition are superior to human abilities in distinguishing between facial expressions of pain and pleasure. Statistical methods and hierarchical clustering offer possible explanations as to why humans fail. The reliability of commercial software, which attempts to identify facial expressions of affective states, can be improved by using the results of our analyses.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20100 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-12885Y" target="_blank" >GJ19-12885Y: Behaviorální a psycho-fyziologická reakce na prezentaci ambivalentních obrazových a zvukových stimulů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Technologies [online]
ISSN
2227-7080
e-ISSN
2227-7080
Svazek periodika
10
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
75
Kód UT WoS článku
000845304900001
EID výsledku v databázi Scopus
2-s2.0-85147557847