Visual Analysis of Emotions Using AI Image-Processing Software: Possible Male/Female Differences between the Emotion Pairs "Neutral" - "Fear" and "Pleasure" - "Pain"
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F21%3A10438829" target="_blank" >RIV/00216208:11310/21:10438829 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11240/21:10438829
Výsledek na webu
<a href="https://doi.org/10.1145/3453892.3461656" target="_blank" >https://doi.org/10.1145/3453892.3461656</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3453892.3461656" target="_blank" >10.1145/3453892.3461656</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Visual Analysis of Emotions Using AI Image-Processing Software: Possible Male/Female Differences between the Emotion Pairs "Neutral" - "Fear" and "Pleasure" - "Pain"
Popis výsledku v původním jazyce
Inferring the emotional state of an individual by viewing his/her facial expression seems to be present in all human cultures. Numerous studies have shown that various changes in facial muscles determine the resulting facial expression. The analysis of images of faces expressing emotional states promises to contribute to quantification of the claimed observations. Here, we use a suite of AI (artificial intelligence) algorithms, along with ML (maximum likelihood) estimated distributions to quantify the shift in facial expression from "neutral" to "fear" and "pain" to "pleasure". The images are single frames of five emotional states (neutral, fear, pain, pleasure, laugh) expressed by actors and actresses in BDSM videos. We extract a feature vector for each image, dimension-reduce these feature vectors by mapping them onto a two-dimensional manifold and calculate the norms of the normalized displacement vectors for each emotional pair. We then find that the ML distributions of the norms are Gamma-distributed and that the modes for each pair are different for both males and females. We use Wilks lambda to determine significance. We find that the distributions for the females are significantly different, but not for the males. The methodology we present here has widespread applications: monitoring the emotional states of humans in various settings; among these: determining whether participants in BDSM and similar videos are indeed volunteering their participation or are victims of criminal activity.
Název v anglickém jazyce
Visual Analysis of Emotions Using AI Image-Processing Software: Possible Male/Female Differences between the Emotion Pairs "Neutral" - "Fear" and "Pleasure" - "Pain"
Popis výsledku anglicky
Inferring the emotional state of an individual by viewing his/her facial expression seems to be present in all human cultures. Numerous studies have shown that various changes in facial muscles determine the resulting facial expression. The analysis of images of faces expressing emotional states promises to contribute to quantification of the claimed observations. Here, we use a suite of AI (artificial intelligence) algorithms, along with ML (maximum likelihood) estimated distributions to quantify the shift in facial expression from "neutral" to "fear" and "pain" to "pleasure". The images are single frames of five emotional states (neutral, fear, pain, pleasure, laugh) expressed by actors and actresses in BDSM videos. We extract a feature vector for each image, dimension-reduce these feature vectors by mapping them onto a two-dimensional manifold and calculate the norms of the normalized displacement vectors for each emotional pair. We then find that the ML distributions of the norms are Gamma-distributed and that the modes for each pair are different for both males and females. We use Wilks lambda to determine significance. We find that the distributions for the females are significantly different, but not for the males. The methodology we present here has widespread applications: monitoring the emotional states of humans in various settings; among these: determining whether participants in BDSM and similar videos are indeed volunteering their participation or are victims of criminal activity.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-12885Y" target="_blank" >GJ19-12885Y: Behaviorální a psycho-fyziologická reakce na prezentaci ambivalentních obrazových a zvukových stimulů</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference
ISBN
978-1-4503-8792-7
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
342-346
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Corfu Greece
Datum konání akce
29. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—