A nonlinear electrophoretic model for PeakMaster: I. Mathematical model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F12%3A10120336" target="_blank" >RIV/00216208:11310/12:10120336 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/elps.201100554" target="_blank" >http://dx.doi.org/10.1002/elps.201100554</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/elps.201100554" target="_blank" >10.1002/elps.201100554</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A nonlinear electrophoretic model for PeakMaster: I. Mathematical model
Popis výsledku v původním jazyce
We extended the linearized model of electromigration, which is used by PeakMaster, by calculation of nonlinear dispersion and diffusion of zones. The model results in the continuity equation for the shape function ?(x,t) of the zone: ?t = -(v0 + vEMD?)?x+ d?xx that contains linear (v0) and nonlinear migration (vEMD), diffusion (d), and subscripts x and t stand for partial derivatives. It is valid for both analyte and system zones, and we present equations how to calculate characteristic zone parameters. We solved the continuity equation by HopfCole transformation and applied it for two different initial conditionsthe Dirac function resulting in the Haarhoff-van der Linde (HVL) function and the rectangular pulse function, which resulted in a function that we denote as the HVLR function. The nonlinear model was implemented in PeakMaster 5.3, which uses the HVLR function to predict the electropherogram for a given background electrolyte and a composition of the sample. HVLR function also
Název v anglickém jazyce
A nonlinear electrophoretic model for PeakMaster: I. Mathematical model
Popis výsledku anglicky
We extended the linearized model of electromigration, which is used by PeakMaster, by calculation of nonlinear dispersion and diffusion of zones. The model results in the continuity equation for the shape function ?(x,t) of the zone: ?t = -(v0 + vEMD?)?x+ d?xx that contains linear (v0) and nonlinear migration (vEMD), diffusion (d), and subscripts x and t stand for partial derivatives. It is valid for both analyte and system zones, and we present equations how to calculate characteristic zone parameters. We solved the continuity equation by HopfCole transformation and applied it for two different initial conditionsthe Dirac function resulting in the Haarhoff-van der Linde (HVL) function and the rectangular pulse function, which resulted in a function that we denote as the HVLR function. The nonlinear model was implemented in PeakMaster 5.3, which uses the HVLR function to predict the electropherogram for a given background electrolyte and a composition of the sample. HVLR function also
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CB - Analytická chemie, separace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA203%2F08%2F1428" target="_blank" >GA203/08/1428: Kapilární elektroforéza s multidimenzionální detekcí a její užití pro separaci a charakterizaci biopolymerů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electrophoresis
ISSN
0173-0835
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
923-930
Kód UT WoS článku
000303155700006
EID výsledku v databázi Scopus
—