Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F16%3A10333426" target="_blank" >RIV/00216208:11310/16:10333426 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1039/c6tc00409a" target="_blank" >http://dx.doi.org/10.1039/c6tc00409a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c6tc00409a" target="_blank" >10.1039/c6tc00409a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers
Popis výsledku v původním jazyce
The Dirac half-metallicity (H. Ishizuka et al., Phys. Rev. Lett. 2012, 109, 237207, Li et al. Phys. Rev. B: Condens. Matter Mater. Phys., 2015, 92, 201403(R)) with a gap in one spin channel but a Dirac cone in the other has been proposed and attracted considerable attention. We report these exciting properties for VCl3 and VI3 layered materials based on density functional theory combined with the self-consistently determined Hubbard U approach (DFT+U-scf). Using DFT+U-scf, the stability and electronic and magnetic structures of VCl3 and VI3 monolayers are systematically investigated. The DFT+U-scf shows that VCl3 and VI3 monolayers have intrinsic ferromagnetism and half-metallicity. Remarkably, the VCl3 and VI3 monolayers possess a rather rare half-metallic Dirac point around the Fermi level with just one spin channel. In contrast to the Dirac point in graphene, the Dirac points in VCl3 and VI3 monolayers are mainly due to the V-d electrons and consequently they show a large spin-orbital coupling induced gaps of about 29 meV and 12 meV for VCl3 and VI3 monolayers, respectively. The Monte Carlo simulations based on the Ising model demonstrate that the Curie temperatures of VCl3 and VI3 sheets are only 80 K and 98 K, respectively. However, the Curie temperature can be increased up to room temperature by carrier doping. The feasibility of an exfoliation from VCl3 and VI3 layered bulk phases is confirmed due to the small cleavage energies. Our results greatly broaden the family of potential 2D Dirac materials. The calculated properties of VCl3 and VI3 monolayers show that these materials have great application potential, opening the way towards the development of high-performance electronic devices.
Název v anglickém jazyce
Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers
Popis výsledku anglicky
The Dirac half-metallicity (H. Ishizuka et al., Phys. Rev. Lett. 2012, 109, 237207, Li et al. Phys. Rev. B: Condens. Matter Mater. Phys., 2015, 92, 201403(R)) with a gap in one spin channel but a Dirac cone in the other has been proposed and attracted considerable attention. We report these exciting properties for VCl3 and VI3 layered materials based on density functional theory combined with the self-consistently determined Hubbard U approach (DFT+U-scf). Using DFT+U-scf, the stability and electronic and magnetic structures of VCl3 and VI3 monolayers are systematically investigated. The DFT+U-scf shows that VCl3 and VI3 monolayers have intrinsic ferromagnetism and half-metallicity. Remarkably, the VCl3 and VI3 monolayers possess a rather rare half-metallic Dirac point around the Fermi level with just one spin channel. In contrast to the Dirac point in graphene, the Dirac points in VCl3 and VI3 monolayers are mainly due to the V-d electrons and consequently they show a large spin-orbital coupling induced gaps of about 29 meV and 12 meV for VCl3 and VI3 monolayers, respectively. The Monte Carlo simulations based on the Ising model demonstrate that the Curie temperatures of VCl3 and VI3 sheets are only 80 K and 98 K, respectively. However, the Curie temperature can be increased up to room temperature by carrier doping. The feasibility of an exfoliation from VCl3 and VI3 layered bulk phases is confirmed due to the small cleavage energies. Our results greatly broaden the family of potential 2D Dirac materials. The calculated properties of VCl3 and VI3 monolayers show that these materials have great application potential, opening the way towards the development of high-performance electronic devices.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP106%2F12%2FG015" target="_blank" >GBP106/12/G015: Vývoj nových nanoporézních adsorbentů a katalyzátorů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Chemistry C
ISSN
2050-7526
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
2518-2526
Kód UT WoS článku
000373011600016
EID výsledku v databázi Scopus
—