Why can a gold salt react as a base?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F17%3A10365480" target="_blank" >RIV/00216208:11310/17:10365480 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1039/c7ob01905j" target="_blank" >https://doi.org/10.1039/c7ob01905j</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c7ob01905j" target="_blank" >10.1039/c7ob01905j</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Why can a gold salt react as a base?
Popis výsledku v původním jazyce
This study shows that gold salts [(L) AuX] (L = PMe3, PPh3, JohnPhos, IPr; X = SbF6 , PF6, BF4, TfO, Tf2N) act as bases in aqueous solutions and can transform acetone to digold acetonyl complexes [(L)(2)Au-2(CH2COCH3)] (+) without any additional base present in solution. The key step is the formation of digold hydroxide complexes [(L)(2)Au-2(OH)] (+). The kinetics of the formation of the digold complexes and their mutual transformation is studied by electrospray ionization mass spectrometry and the delayed reactant labelling method. We show that the formation of digold hydroxide is the essential first step towards the formation of the digold acetonyl complex, the reaction is favoured by more polar solvents, and the effect of counter ions is negligible. DFT calculations suggest that digold hydroxide and digold acetonyl complexes can exist in solution only due to the stabilization by the interaction with two gold atoms. The reaction between the digold hydroxide and acetone proceeds towards the dimer {[(L) Au(OH)] u [(L) Au(CH3COCH3)] (+) }. The monomeric units interact at the gold atoms in the perpendicular arrangement typical of the gold clusters bound by the aurophilic interaction. The hydrogen is transferred
Název v anglickém jazyce
Why can a gold salt react as a base?
Popis výsledku anglicky
This study shows that gold salts [(L) AuX] (L = PMe3, PPh3, JohnPhos, IPr; X = SbF6 , PF6, BF4, TfO, Tf2N) act as bases in aqueous solutions and can transform acetone to digold acetonyl complexes [(L)(2)Au-2(CH2COCH3)] (+) without any additional base present in solution. The key step is the formation of digold hydroxide complexes [(L)(2)Au-2(OH)] (+). The kinetics of the formation of the digold complexes and their mutual transformation is studied by electrospray ionization mass spectrometry and the delayed reactant labelling method. We show that the formation of digold hydroxide is the essential first step towards the formation of the digold acetonyl complex, the reaction is favoured by more polar solvents, and the effect of counter ions is negligible. DFT calculations suggest that digold hydroxide and digold acetonyl complexes can exist in solution only due to the stabilization by the interaction with two gold atoms. The reaction between the digold hydroxide and acetone proceeds towards the dimer {[(L) Au(OH)] u [(L) Au(CH3COCH3)] (+) }. The monomeric units interact at the gold atoms in the perpendicular arrangement typical of the gold clusters bound by the aurophilic interaction. The hydrogen is transferred
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10401 - Organic chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Organic and Biomolecular Chemistry
ISSN
1477-0520
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
37
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
7841-7852
Kód UT WoS článku
000412825400017
EID výsledku v databázi Scopus
2-s2.0-85030258482