Hourly land-use regression models based on low-cost PM monitor data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F18%3A10382508" target="_blank" >RIV/00216208:11310/18:10382508 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jQ8EedZwWX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jQ8EedZwWX</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.envres.2018.06.052" target="_blank" >10.1016/j.envres.2018.06.052</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hourly land-use regression models based on low-cost PM monitor data
Popis výsledku v původním jazyce
Land-use regression (LUR) models provide location and time specific estimates of exposure to air pollution and thereby improve the sensitivity of health effects models. However, they require pollutant concentrations at multiple locations along with land-use variables. Often, monitoring is performed over short durations using mobile monitoring with research-grade instruments. Low-cost PM monitors provide an alternative approach that increases the spatial and temporal resolution of the air quality data. LUR models were developed to predict hourly PM concentrations across a metropolitan area using PM concentrations measured simultaneously at multiple locations with low-cost monitors. Monitors were placed at 23 sites during the 2015/16 heating season. Monitors were externally calibrated using co-located measurements including a reference instrument (GRIMM particle spectrometer). LUR models for each hour of the day and weekdays/weekend days were developed using the deletion/substitution/addition algorithm. Coefficients of determination for hourly PM predictions ranged from 0.66 and 0.76 (average 0.7). The hourly-resolved LUR model results will be used in epidemiological studies to examine if and how quickly, increases in ambient PM concentrations trigger adverse health events by reducing the exposure misclassification that arises from using less time resolved exposure estimates.
Název v anglickém jazyce
Hourly land-use regression models based on low-cost PM monitor data
Popis výsledku anglicky
Land-use regression (LUR) models provide location and time specific estimates of exposure to air pollution and thereby improve the sensitivity of health effects models. However, they require pollutant concentrations at multiple locations along with land-use variables. Often, monitoring is performed over short durations using mobile monitoring with research-grade instruments. Low-cost PM monitors provide an alternative approach that increases the spatial and temporal resolution of the air quality data. LUR models were developed to predict hourly PM concentrations across a metropolitan area using PM concentrations measured simultaneously at multiple locations with low-cost monitors. Monitors were placed at 23 sites during the 2015/16 heating season. Monitors were externally calibrated using co-located measurements including a reference instrument (GRIMM particle spectrometer). LUR models for each hour of the day and weekdays/weekend days were developed using the deletion/substitution/addition algorithm. Coefficients of determination for hourly PM predictions ranged from 0.66 and 0.76 (average 0.7). The hourly-resolved LUR model results will be used in epidemiological studies to examine if and how quickly, increases in ambient PM concentrations trigger adverse health events by reducing the exposure misclassification that arises from using less time resolved exposure estimates.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental Research
ISSN
0013-9351
e-ISSN
—
Svazek periodika
167
Číslo periodika v rámci svazku
November 2018
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
7-14
Kód UT WoS článku
000447247500002
EID výsledku v databázi Scopus
2-s2.0-85049506830