Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of land use regression modelling to describe atmospheric levels of semivolatile organic compounds on a national scale

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00122883" target="_blank" >RIV/00216224:14310/21:00122883 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0048969721035920?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969721035920?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2021.148520" target="_blank" >10.1016/j.scitotenv.2021.148520</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of land use regression modelling to describe atmospheric levels of semivolatile organic compounds on a national scale

  • Popis výsledku v původním jazyce

    Despite the success of passive sampler-based monitoring networks in capturing global atmospheric distributions of semivolatile organic compounds (SVOCs), their limited spatial resolution remains a challenge. Adequate spatial coverage is necessary to better characterize concentration gradients, identify point sources, estimate human exposure, and evaluate the effectiveness of chemical regulations such as the Stockholm Convention on Persistent Organic Pollutants. Land use regression (LUR) modelling can be used to integrate land use characteristics and other predictor variables (industrial emissions, traffic intensity, demographics, etc.) to describe or predict the distribution of air concentrations at unmeasured locations across a region or country. While LUR models are frequently applied to data-rich conventional air pollutants such as particulate matter, ozone, and nitrogen oxides, they are rarely applied to SVOCs. The MONET passive air sampling network (RECETOX, Masaryk University) continuously measures atmospheric SVOC levels across Czechia in monthly intervals. Using monitoring data from 29 MONET sites over a two-year pe-riod (2015-2017) and a variety of predictor variables, we developed LUR models to describe atmospheric levels and identify sources of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and DDT across the country. Strong and statistically significant (R-2 &gt; 0.6; p &lt; 0.05) models were derived for PAH and PCB levels on a national scale. The PAH model retained three predictor variables - heating emissions represented by domestic fuel consumption, industrial PAH point sources, and the hill:valley index, a measure of site topography. The PCB model retained two predictor variables - site elevation, and secondary sources of PCBs represented by soil concentrations. These models were then applied to Czechia as a whole, highlighting the spatial variability of atmospheric SVOC levels, and providing a tool that can be used for further optimization of sampling network design, as well as evaluating potential human and environmental chemical exposures.

  • Název v anglickém jazyce

    Application of land use regression modelling to describe atmospheric levels of semivolatile organic compounds on a national scale

  • Popis výsledku anglicky

    Despite the success of passive sampler-based monitoring networks in capturing global atmospheric distributions of semivolatile organic compounds (SVOCs), their limited spatial resolution remains a challenge. Adequate spatial coverage is necessary to better characterize concentration gradients, identify point sources, estimate human exposure, and evaluate the effectiveness of chemical regulations such as the Stockholm Convention on Persistent Organic Pollutants. Land use regression (LUR) modelling can be used to integrate land use characteristics and other predictor variables (industrial emissions, traffic intensity, demographics, etc.) to describe or predict the distribution of air concentrations at unmeasured locations across a region or country. While LUR models are frequently applied to data-rich conventional air pollutants such as particulate matter, ozone, and nitrogen oxides, they are rarely applied to SVOCs. The MONET passive air sampling network (RECETOX, Masaryk University) continuously measures atmospheric SVOC levels across Czechia in monthly intervals. Using monitoring data from 29 MONET sites over a two-year pe-riod (2015-2017) and a variety of predictor variables, we developed LUR models to describe atmospheric levels and identify sources of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and DDT across the country. Strong and statistically significant (R-2 &gt; 0.6; p &lt; 0.05) models were derived for PAH and PCB levels on a national scale. The PAH model retained three predictor variables - heating emissions represented by domestic fuel consumption, industrial PAH point sources, and the hill:valley index, a measure of site topography. The PCB model retained two predictor variables - site elevation, and secondary sources of PCBs represented by soil concentrations. These models were then applied to Czechia as a whole, highlighting the spatial variability of atmospheric SVOC levels, and providing a tool that can be used for further optimization of sampling network design, as well as evaluating potential human and environmental chemical exposures.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018121" target="_blank" >LM2018121: Výzkumná infrastruktura RECETOX</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

  • Svazek periodika

    793

  • Číslo periodika v rámci svazku

    November 2021

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    1-11

  • Kód UT WoS článku

    000691589200004

  • EID výsledku v databázi Scopus

    2-s2.0-85109215436