Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F19%3A10378889" target="_blank" >RIV/00216208:11310/19:10378889 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41210/19:79454 RIV/00027049:_____/18:N0000067
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9nlaalxSH7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=9nlaalxSH7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/22797254.2018.1482524" target="_blank" >10.1080/22797254.2018.1482524</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic
Popis výsledku v původním jazyce
Data on the real extent of soil that is degraded by erosion represent important information for the purposes of conservation policy. However, this type of data is rarely available for large areas. A remote-sensing-based method for identifying of eroded areas at the regional scale has been tested using a combination of time series of free access Sentinel-2 image data, airborne orthoimages and ground-truth data. The unsupervised classification ISODATA of the Sentinel-2A images has been performed. The minimum distance method has been applied for the assignment of unsupervised classes to four erosion classes using the ground-truth data. The automatic classification of eroded soils achieved an overall accuracy of 55.2% for three distinguished classes. An accumulated class has been eliminated as no unsupervised classes were assigned to this erosion class. A simplified classification of two classes (strongly eroded and other soils) reached an accuracy of 80.9%. The overall accuracy of the simplified classification increased to 86.9% after the visual refinement using orthoimages. This study shows the potential of the tested approach to produce valuable data on actual soil degradation by erosion. The limitations of the method are related to the soil cover variability, masking effect of clouds, vegetation or litter and the spectral separability of individual classes.
Název v anglickém jazyce
Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic
Popis výsledku anglicky
Data on the real extent of soil that is degraded by erosion represent important information for the purposes of conservation policy. However, this type of data is rarely available for large areas. A remote-sensing-based method for identifying of eroded areas at the regional scale has been tested using a combination of time series of free access Sentinel-2 image data, airborne orthoimages and ground-truth data. The unsupervised classification ISODATA of the Sentinel-2A images has been performed. The minimum distance method has been applied for the assignment of unsupervised classes to four erosion classes using the ground-truth data. The automatic classification of eroded soils achieved an overall accuracy of 55.2% for three distinguished classes. An accumulated class has been eliminated as no unsupervised classes were assigned to this erosion class. A simplified classification of two classes (strongly eroded and other soils) reached an accuracy of 80.9%. The overall accuracy of the simplified classification increased to 86.9% after the visual refinement using orthoimages. This study shows the potential of the tested approach to produce valuable data on actual soil degradation by erosion. The limitations of the method are related to the soil cover variability, masking effect of clouds, vegetation or litter and the spectral separability of individual classes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Europen Journal of Remote Sensing
ISSN
2279-7254
e-ISSN
2279-7254
Svazek periodika
52
Číslo periodika v rámci svazku
Supplement 1
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
15
Strana od-do
108-122
Kód UT WoS článku
000475928900009
EID výsledku v databázi Scopus
2-s2.0-85049792270