Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparative Analysis of Machine Learning Techniques and Data Sources for Dead Tree Detection: What Is the Best Way to Go?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F24%3A100424" target="_blank" >RIV/60460709:41320/24:100424 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.3390/rs16163086" target="_blank" >http://dx.doi.org/10.3390/rs16163086</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs16163086" target="_blank" >10.3390/rs16163086</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparative Analysis of Machine Learning Techniques and Data Sources for Dead Tree Detection: What Is the Best Way to Go?

  • Popis výsledku v původním jazyce

    In Central Europe, the extent of bark beetle infestation in spruce stands due to prolonged high temperatures and drought has created large areas of dead trees, which are difficult to monitor by ground surveys. Remote sensing is the only possibility for the assessment of the extent of the dead tree areas. Several options exist for mapping individual dead trees, including different sources and different processing techniques. Satellite images, aerial images, and images from UAVs can be used as sources. Machine and deep learning techniques are included in the processing techniques, although models are often presented without proper realistic validation.This paper compares methods of monitoring dead tree areas using three data sources: multispectral aerial imagery, multispectral PlanetScope satellite imagery, and multispectral Sentinel-2 imagery, as well as two processing methods. The classification methods used are Random Forest (RF) and neural network (NN) in two modalities: pixel- and object-based. In total, 12 combinations are presented. The results were evaluated using two types of reference data: accuracy of model on validation data and accuracy on vector-format semi-automatic classification polygons created by a human evaluator, referred to as real Ground Truth. The aerial imagery was found to have the highest model accuracy, with the CNN model achieving up to 98% with object classification. A higher classification accuracy for satellite imagery was achieved by combining pixel classification and the RF model (87% accuracy for Sentinel-2). For PlanetScope Imagery, the best result was 89%, using a combination of CNN and object-based classifications. A comparison with the Ground Truth showed a decrease in the classification accuracy of the aerial imagery to 89% and the classification accuracy of the satellite imagery to around 70%. In conclusion, aerial imagery is the most effective tool for monitoring bark beetle calamity in terms of precision and accuracy, but satellite imagery has the advantage of fast availability and shorter data processing time, together with larger coverage areas.

  • Název v anglickém jazyce

    Comparative Analysis of Machine Learning Techniques and Data Sources for Dead Tree Detection: What Is the Best Way to Go?

  • Popis výsledku anglicky

    In Central Europe, the extent of bark beetle infestation in spruce stands due to prolonged high temperatures and drought has created large areas of dead trees, which are difficult to monitor by ground surveys. Remote sensing is the only possibility for the assessment of the extent of the dead tree areas. Several options exist for mapping individual dead trees, including different sources and different processing techniques. Satellite images, aerial images, and images from UAVs can be used as sources. Machine and deep learning techniques are included in the processing techniques, although models are often presented without proper realistic validation.This paper compares methods of monitoring dead tree areas using three data sources: multispectral aerial imagery, multispectral PlanetScope satellite imagery, and multispectral Sentinel-2 imagery, as well as two processing methods. The classification methods used are Random Forest (RF) and neural network (NN) in two modalities: pixel- and object-based. In total, 12 combinations are presented. The results were evaluated using two types of reference data: accuracy of model on validation data and accuracy on vector-format semi-automatic classification polygons created by a human evaluator, referred to as real Ground Truth. The aerial imagery was found to have the highest model accuracy, with the CNN model achieving up to 98% with object classification. A higher classification accuracy for satellite imagery was achieved by combining pixel classification and the RF model (87% accuracy for Sentinel-2). For PlanetScope Imagery, the best result was 89%, using a combination of CNN and object-based classifications. A comparison with the Ground Truth showed a decrease in the classification accuracy of the aerial imagery to 89% and the classification accuracy of the satellite imagery to around 70%. In conclusion, aerial imagery is the most effective tool for monitoring bark beetle calamity in terms of precision and accuracy, but satellite imagery has the advantage of fast availability and shorter data processing time, together with larger coverage areas.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10500 - Earth and related environmental sciences

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Remote Sensing

  • ISSN

    2072-4292

  • e-ISSN

    2072-4292

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    16.0

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    18

  • Strana od-do

    1-18

  • Kód UT WoS článku

    001305203900001

  • EID výsledku v databázi Scopus

    2-s2.0-85202614773