Tree Species Classification and Health Status Assessment for a Mixed Broadleaf-Conifer Forest with UAS Multispectral Imaging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41320%2F20%3A84557" target="_blank" >RIV/60460709:41320/20:84557 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2072-4292/12/22/3722" target="_blank" >https://www.mdpi.com/2072-4292/12/22/3722</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs12223722" target="_blank" >10.3390/rs12223722</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tree Species Classification and Health Status Assessment for a Mixed Broadleaf-Conifer Forest with UAS Multispectral Imaging
Popis výsledku v původním jazyce
Automatic discrimination of tree species and identification of physiological stress imposed on forest trees by biotic factors from unmanned aerial systems (UAS) offers substantial advantages in forest management practices. In this study, we aimed to develop a novel workflow for facilitating tree species classification and the detection of healthy, unhealthy, and dead trees caused by bark beetle infestation using ultra-high resolution 5-band UAS bi-temporal aerial imagery in the Czech Republic. The study is divided into two steps. We initially classified the tree type, either as broadleaf or conifer, and we then classified trees according to the tree type and health status, and subgroups were created to further classify trees (detailed classification). Photogrammetric processed datasets achieved by the use of structure-from-motion (SfM) imaging technique, where resulting digital terrain models (DTMs), digital surface models (DSMs), and orthophotos with a resolution of 0,05 m were utilized as input for
Název v anglickém jazyce
Tree Species Classification and Health Status Assessment for a Mixed Broadleaf-Conifer Forest with UAS Multispectral Imaging
Popis výsledku anglicky
Automatic discrimination of tree species and identification of physiological stress imposed on forest trees by biotic factors from unmanned aerial systems (UAS) offers substantial advantages in forest management practices. In this study, we aimed to develop a novel workflow for facilitating tree species classification and the detection of healthy, unhealthy, and dead trees caused by bark beetle infestation using ultra-high resolution 5-band UAS bi-temporal aerial imagery in the Czech Republic. The study is divided into two steps. We initially classified the tree type, either as broadleaf or conifer, and we then classified trees according to the tree type and health status, and subgroups were created to further classify trees (detailed classification). Photogrammetric processed datasets achieved by the use of structure-from-motion (SfM) imaging technique, where resulting digital terrain models (DTMs), digital surface models (DSMs), and orthophotos with a resolution of 0,05 m were utilized as input for
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000803" target="_blank" >EF16_019/0000803: Excelentní Výzkum jako podpora Adaptace lesnictví a dřevařství na globální změnu a 4. průmyslovou revoluci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
NN -
Počet stran výsledku
21
Strana od-do
1-21
Kód UT WoS článku
000595212100001
EID výsledku v databázi Scopus
2-s2.0-85096233593