Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10406616" target="_blank" >RIV/00216208:11310/20:10406616 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VRHBaSpzH6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VRHBaSpzH6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rse.2020.111691" target="_blank" >10.1016/j.rse.2020.111691</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data

  • Popis výsledku v původním jazyce

    The Landsat archive offers great potential for monitoring forest cover change, and new approaches moving from categorical towards continuous change products emerge rapidly. Most approaches, however, require vast amounts of high-quality reference data, limiting their applicability across space and time. We here propose the use of a generalized regression-based unmixing approach to overcome this limitation. The unmixing approach relies on temporally generalized machine learning regression models (random forest regression [RFR] and support vector regression [SVR]), which are trained on synthetically mixed data from a multi-year library of pure and hence easy to identify image spectra. We apply the model to three decades of Landsat data, mapping both overall forest cover and broadleaved/coniferous forest cover fractions across space and time. The resulting maps well represented the spatial-temporal patterns of forest (change) in our study region. The SVR model outperformed the RFR model, yielding accuracies of r2 = 0.74/RMSE = 0.18 for the forest cover fraction maps, r2 = 0.50/RMSE = 0.24 for the broadleaved forest cover fraction maps, and r2 = 0.59/RMSE = 0.23 for coniferous forest cover fraction maps, respectively. Highest map errors were found in mature stands, residential areas, and recently disturbed forests. We also found some variability in forest cover fractions for stable forest pixels over time, which were explained by variation in Landsat image acquisition dates. We conclude that regression-based unmixing using synthetically mixed training data from a multi-year spectral library offers an innovative strategy for mapping forest cover fractions and forest types throughout the Landsat archive that likely can be extended to large areas.

  • Název v anglickém jazyce

    A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data

  • Popis výsledku anglicky

    The Landsat archive offers great potential for monitoring forest cover change, and new approaches moving from categorical towards continuous change products emerge rapidly. Most approaches, however, require vast amounts of high-quality reference data, limiting their applicability across space and time. We here propose the use of a generalized regression-based unmixing approach to overcome this limitation. The unmixing approach relies on temporally generalized machine learning regression models (random forest regression [RFR] and support vector regression [SVR]), which are trained on synthetically mixed data from a multi-year library of pure and hence easy to identify image spectra. We apply the model to three decades of Landsat data, mapping both overall forest cover and broadleaved/coniferous forest cover fractions across space and time. The resulting maps well represented the spatial-temporal patterns of forest (change) in our study region. The SVR model outperformed the RFR model, yielding accuracies of r2 = 0.74/RMSE = 0.18 for the forest cover fraction maps, r2 = 0.50/RMSE = 0.24 for the broadleaved forest cover fraction maps, and r2 = 0.59/RMSE = 0.23 for coniferous forest cover fraction maps, respectively. Highest map errors were found in mature stands, residential areas, and recently disturbed forests. We also found some variability in forest cover fractions for stable forest pixels over time, which were explained by variation in Landsat image acquisition dates. We conclude that regression-based unmixing using synthetically mixed training data from a multi-year spectral library offers an innovative strategy for mapping forest cover fractions and forest types throughout the Landsat archive that likely can be extended to large areas.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.

Údaje specifické pro druh výsledku

  • Název periodika

    Remote Sensing of Environment

  • ISSN

    0034-4257

  • e-ISSN

  • Svazek periodika

    April 2020

  • Číslo periodika v rámci svazku

    240

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    111691

  • Kód UT WoS článku

    000523955300002

  • EID výsledku v databázi Scopus

    2-s2.0-85078992209