Temperature trends in Europe: comparison of different data sources
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10415005" target="_blank" >RIV/00216208:11310/20:10415005 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=iU4G7lz7qf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=iU4G7lz7qf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00704-019-03038-w" target="_blank" >10.1007/s00704-019-03038-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Temperature trends in Europe: comparison of different data sources
Popis výsledku v původním jazyce
Temperature trends differ markedly not only region-to-region and between seasons but also depending on the selected dataset. Only a few studies have attempted to compare temperature trends between data sources of different types. Here, one station-based (ECA&D), two gridded (E-OBS; CRUTEM) and two reanalysis (ERA-40; NCEP/NCAR) datasets are used for long-term temperature change detection over Europe. The period from 1957 to 2002 when all the datasets overlap is examined and the linear regression method is utilized to calculate temperature trends in each season separately. Raster maps illustrating differences in trends between datasets are accompanied by mean temperature series showing the causes of these discrepancies. We demonstrate that trends in reanalyses deviate considerably from the other datasets mainly because the type and amount of data assimilated into them change in time. Interestingly, whilst the ERA-40 shows lower trends due to an overestimation of the mean temperature prior 1967, the NCEP/NCAR reveal lower trends compared with other datasets owing to mean temperature underestimation at the end of the examined period. A noticeable anomaly in NCEP/NCAR data was detected in Eastern Europe in summer with temperature trends nearly twice as steep compared with other data sources. The study also reveals the weaknesses of gridded datasets, such as the unstable number of stations entering the interpolation over time. The lack of representativeness of some climate stations is the major drawback of the station data.
Název v anglickém jazyce
Temperature trends in Europe: comparison of different data sources
Popis výsledku anglicky
Temperature trends differ markedly not only region-to-region and between seasons but also depending on the selected dataset. Only a few studies have attempted to compare temperature trends between data sources of different types. Here, one station-based (ECA&D), two gridded (E-OBS; CRUTEM) and two reanalysis (ERA-40; NCEP/NCAR) datasets are used for long-term temperature change detection over Europe. The period from 1957 to 2002 when all the datasets overlap is examined and the linear regression method is utilized to calculate temperature trends in each season separately. Raster maps illustrating differences in trends between datasets are accompanied by mean temperature series showing the causes of these discrepancies. We demonstrate that trends in reanalyses deviate considerably from the other datasets mainly because the type and amount of data assimilated into them change in time. Interestingly, whilst the ERA-40 shows lower trends due to an overestimation of the mean temperature prior 1967, the NCEP/NCAR reveal lower trends compared with other datasets owing to mean temperature underestimation at the end of the examined period. A noticeable anomaly in NCEP/NCAR data was detected in Eastern Europe in summer with temperature trends nearly twice as steep compared with other data sources. The study also reveals the weaknesses of gridded datasets, such as the unstable number of stations entering the interpolation over time. The lack of representativeness of some climate stations is the major drawback of the station data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-04676S" target="_blank" >GA16-04676S: Nové přístupy k určování klimatických trendů a jejich statistické významnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theorectical and Applied Climatology
ISSN
0177-798X
e-ISSN
—
Svazek periodika
139
Číslo periodika v rámci svazku
3-4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
1305-1316
Kód UT WoS článku
000511528400037
EID výsledku v databázi Scopus
2-s2.0-85076298042