Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Trends in intraseasonal temperature variability in Europe: Comparison of station data with gridded data and reanalyses

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F24%3A00586404" target="_blank" >RIV/68378289:_____/24:00586404 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11310/24:10483437

  • Výsledek na webu

    <a href="https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.8512" target="_blank" >https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.8512</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/joc.8512" target="_blank" >10.1002/joc.8512</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Trends in intraseasonal temperature variability in Europe: Comparison of station data with gridded data and reanalyses

  • Popis výsledku v původním jazyce

    Trends in temperature variability are often referred to have higher effect on temperature extremes than trends in the mean. We investigate trends in three complementary measures of intraseasonal temperature variability: (a) standard deviation of mean daily temperature (SD), (b) mean absolute value of day-to-day temperature change (DTD) and (c) 1-day lagged temporal autocorrelation of temperature (LAG). It is a well-established fact that different types of data (station, gridded, reanalyses) provide different temperature characteristics and particularly their trends. Moreover, we have uncovered that trends in measures of variability are considerably sensitive to data inhomogeneities. Therefore, we use five different datasets, one station based (ECA&D), one gridded (EOBS) and three reanalyses (JRA-55, NCEP/NCAR, 20CR), and compare them. The period from 1961 to 2014 where all datasets overlap is examined, and the linear regression method is utilized to calculate trends of investigated measures in summer and winter. Intraseasonal temperature variability tends to decrease in winter, especially in eastern and northern Europe, where trends below7%<middle dot>decade-1 are detected for all measures. Decreases in DTD and LAG (indicating increase in persistence) prevail also in summer while summer SD tends to increase. The increase in the width of temperature distribution and the simultaneous increase in persistence indicate a tendency towards the rise in the frequency of extended extreme events in summer. Unlike previous studies, our results imply that reanalyses are not the least accurate in determining trends. JRA-55 appears to be the least diverging from other datasets, while the largest discrepancies are detected for DTD at station data.

  • Název v anglickém jazyce

    Trends in intraseasonal temperature variability in Europe: Comparison of station data with gridded data and reanalyses

  • Popis výsledku anglicky

    Trends in temperature variability are often referred to have higher effect on temperature extremes than trends in the mean. We investigate trends in three complementary measures of intraseasonal temperature variability: (a) standard deviation of mean daily temperature (SD), (b) mean absolute value of day-to-day temperature change (DTD) and (c) 1-day lagged temporal autocorrelation of temperature (LAG). It is a well-established fact that different types of data (station, gridded, reanalyses) provide different temperature characteristics and particularly their trends. Moreover, we have uncovered that trends in measures of variability are considerably sensitive to data inhomogeneities. Therefore, we use five different datasets, one station based (ECA&D), one gridded (EOBS) and three reanalyses (JRA-55, NCEP/NCAR, 20CR), and compare them. The period from 1961 to 2014 where all datasets overlap is examined, and the linear regression method is utilized to calculate trends of investigated measures in summer and winter. Intraseasonal temperature variability tends to decrease in winter, especially in eastern and northern Europe, where trends below7%<middle dot>decade-1 are detected for all measures. Decreases in DTD and LAG (indicating increase in persistence) prevail also in summer while summer SD tends to increase. The increase in the width of temperature distribution and the simultaneous increase in persistence indicate a tendency towards the rise in the frequency of extended extreme events in summer. Unlike previous studies, our results imply that reanalyses are not the least accurate in determining trends. JRA-55 appears to be the least diverging from other datasets, while the largest discrepancies are detected for DTD at station data.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10510 - Climatic research

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-07954S" target="_blank" >GA21-07954S: Měnící se proměnlivost atmosféry</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Climatology

  • ISSN

    0899-8418

  • e-ISSN

    1097-0088

  • Svazek periodika

    44

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    3054-3074

  • Kód UT WoS článku

    001230291400001

  • EID výsledku v databázi Scopus

    2-s2.0-85194406179