Trends in intraseasonal temperature variability in Europe: Comparison of station data with gridded data and reanalyses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F24%3A00586404" target="_blank" >RIV/68378289:_____/24:00586404 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/24:10483437
Výsledek na webu
<a href="https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.8512" target="_blank" >https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.8512</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/joc.8512" target="_blank" >10.1002/joc.8512</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Trends in intraseasonal temperature variability in Europe: Comparison of station data with gridded data and reanalyses
Popis výsledku v původním jazyce
Trends in temperature variability are often referred to have higher effect on temperature extremes than trends in the mean. We investigate trends in three complementary measures of intraseasonal temperature variability: (a) standard deviation of mean daily temperature (SD), (b) mean absolute value of day-to-day temperature change (DTD) and (c) 1-day lagged temporal autocorrelation of temperature (LAG). It is a well-established fact that different types of data (station, gridded, reanalyses) provide different temperature characteristics and particularly their trends. Moreover, we have uncovered that trends in measures of variability are considerably sensitive to data inhomogeneities. Therefore, we use five different datasets, one station based (ECA&D), one gridded (EOBS) and three reanalyses (JRA-55, NCEP/NCAR, 20CR), and compare them. The period from 1961 to 2014 where all datasets overlap is examined, and the linear regression method is utilized to calculate trends of investigated measures in summer and winter. Intraseasonal temperature variability tends to decrease in winter, especially in eastern and northern Europe, where trends below7%<middle dot>decade-1 are detected for all measures. Decreases in DTD and LAG (indicating increase in persistence) prevail also in summer while summer SD tends to increase. The increase in the width of temperature distribution and the simultaneous increase in persistence indicate a tendency towards the rise in the frequency of extended extreme events in summer. Unlike previous studies, our results imply that reanalyses are not the least accurate in determining trends. JRA-55 appears to be the least diverging from other datasets, while the largest discrepancies are detected for DTD at station data.
Název v anglickém jazyce
Trends in intraseasonal temperature variability in Europe: Comparison of station data with gridded data and reanalyses
Popis výsledku anglicky
Trends in temperature variability are often referred to have higher effect on temperature extremes than trends in the mean. We investigate trends in three complementary measures of intraseasonal temperature variability: (a) standard deviation of mean daily temperature (SD), (b) mean absolute value of day-to-day temperature change (DTD) and (c) 1-day lagged temporal autocorrelation of temperature (LAG). It is a well-established fact that different types of data (station, gridded, reanalyses) provide different temperature characteristics and particularly their trends. Moreover, we have uncovered that trends in measures of variability are considerably sensitive to data inhomogeneities. Therefore, we use five different datasets, one station based (ECA&D), one gridded (EOBS) and three reanalyses (JRA-55, NCEP/NCAR, 20CR), and compare them. The period from 1961 to 2014 where all datasets overlap is examined, and the linear regression method is utilized to calculate trends of investigated measures in summer and winter. Intraseasonal temperature variability tends to decrease in winter, especially in eastern and northern Europe, where trends below7%<middle dot>decade-1 are detected for all measures. Decreases in DTD and LAG (indicating increase in persistence) prevail also in summer while summer SD tends to increase. The increase in the width of temperature distribution and the simultaneous increase in persistence indicate a tendency towards the rise in the frequency of extended extreme events in summer. Unlike previous studies, our results imply that reanalyses are not the least accurate in determining trends. JRA-55 appears to be the least diverging from other datasets, while the largest discrepancies are detected for DTD at station data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10510 - Climatic research
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-07954S" target="_blank" >GA21-07954S: Měnící se proměnlivost atmosféry</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Climatology
ISSN
0899-8418
e-ISSN
1097-0088
Svazek periodika
44
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
3054-3074
Kód UT WoS článku
001230291400001
EID výsledku v databázi Scopus
2-s2.0-85194406179