Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Trends in intraseasonal temperature variability in Europe, 1961-2018

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F22%3A00564319" target="_blank" >RIV/68378289:_____/22:00564319 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11310/22:10457830

  • Výsledek na webu

    <a href="https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.7645" target="_blank" >https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.7645</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/joc.7645" target="_blank" >10.1002/joc.7645</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Trends in intraseasonal temperature variability in Europe, 1961-2018

  • Popis výsledku v původním jazyce

    While long-term changes in measures of central tendency of climate elements, that is, mean temperature, are well acknowledged, studies of trends in measures of their variability are much less common. This is despite the fact that trends in variability can have higher effect on climate extremes than trends in mean. Here, four measures of intraseasonal variability are examined: (a) standard deviation of mean daily temperature, (b) the range between the 90th and 10th quantile of mean daily temperature, (c) mean absolute value of day-to-day temperature change, and (d) one-day lagged temporal autocorrelation. ECA&D daily data from 168 stations and linear regression method are utilized to calculate trends of these characteristics in period from 1961 to 2018. Significant trends (positive and negative) are revealed with substantial differences between seasons, regions and measures. The most considerable decreases in temperature variability were recorded in winter, for temporal autocorrelation in eastern Europe and for variance-based measures in northern Europe. For example, the standard deviation has decreased by more than 10% in the Arctic Ocean. This can indicate a decrease in the frequency of cold extremes in Scandinavia. On the contrary, increasing persistence may suggest a greater likelihood of cold extremes in the East European Plain. Increases in variability prevail only in summer, but not for all measures and not as clearly as decreases in winter. Trends in temporal autocorrelation and day-to-day change appear to be sensitive to data issues, such as inhomogeneities and changes in observational procedures.

  • Název v anglickém jazyce

    Trends in intraseasonal temperature variability in Europe, 1961-2018

  • Popis výsledku anglicky

    While long-term changes in measures of central tendency of climate elements, that is, mean temperature, are well acknowledged, studies of trends in measures of their variability are much less common. This is despite the fact that trends in variability can have higher effect on climate extremes than trends in mean. Here, four measures of intraseasonal variability are examined: (a) standard deviation of mean daily temperature, (b) the range between the 90th and 10th quantile of mean daily temperature, (c) mean absolute value of day-to-day temperature change, and (d) one-day lagged temporal autocorrelation. ECA&D daily data from 168 stations and linear regression method are utilized to calculate trends of these characteristics in period from 1961 to 2018. Significant trends (positive and negative) are revealed with substantial differences between seasons, regions and measures. The most considerable decreases in temperature variability were recorded in winter, for temporal autocorrelation in eastern Europe and for variance-based measures in northern Europe. For example, the standard deviation has decreased by more than 10% in the Arctic Ocean. This can indicate a decrease in the frequency of cold extremes in Scandinavia. On the contrary, increasing persistence may suggest a greater likelihood of cold extremes in the East European Plain. Increases in variability prevail only in summer, but not for all measures and not as clearly as decreases in winter. Trends in temporal autocorrelation and day-to-day change appear to be sensitive to data issues, such as inhomogeneities and changes in observational procedures.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-07954S" target="_blank" >GA21-07954S: Měnící se proměnlivost atmosféry</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Climatology

  • ISSN

    0899-8418

  • e-ISSN

    1097-0088

  • Svazek periodika

    42

  • Číslo periodika v rámci svazku

    14

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    23

  • Strana od-do

    7298-7320

  • Kód UT WoS článku

    000782679600001

  • EID výsledku v databázi Scopus

    2-s2.0-85128199215