Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic Detection of Driving-Lane Geometry Based on Aerial Images and Existing Spatial Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F21%3A10435912" target="_blank" >RIV/00216208:11310/21:10435912 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kGBdkmPJ-X" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kGBdkmPJ-X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1553/giscience2021_02_s122" target="_blank" >10.1553/giscience2021_02_s122</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic Detection of Driving-Lane Geometry Based on Aerial Images and Existing Spatial Data

  • Popis výsledku v původním jazyce

    Spatial data are a key element of geographic information systems (GIS). With the growing computational power of modern GIS, the demand for accurate and up-to-date high definition (HD) spatial data grows accordingly and increases the requirements of data acquisition. To simplify and automate the process of obtaining HD road data, several methods have been created with different approaches and stages of automation. A new method combining high resolution aerial images and existing linear road data is presented in this article. The method models roads in a vector environment at the level of single driving lanes. Object-based image analysis (OBIA) is used to identify road surface markings (RSMs) in aerial images; the geometry of RSM polygons is analysed (skeletonization, neighbourhood and context analysis, pattern recognition) in order to obtain a coherent network of driving lanes. The technique is able to distinguish automatically between solid and broken lines. The method proposed was tested and proven to satisfactorily model driving lanes, including in complex situations like junctions, roundabouts or over- or underpasses.

  • Název v anglickém jazyce

    Automatic Detection of Driving-Lane Geometry Based on Aerial Images and Existing Spatial Data

  • Popis výsledku anglicky

    Spatial data are a key element of geographic information systems (GIS). With the growing computational power of modern GIS, the demand for accurate and up-to-date high definition (HD) spatial data grows accordingly and increases the requirements of data acquisition. To simplify and automate the process of obtaining HD road data, several methods have been created with different approaches and stages of automation. A new method combining high resolution aerial images and existing linear road data is presented in this article. The method models roads in a vector environment at the level of single driving lanes. Object-based image analysis (OBIA) is used to identify road surface markings (RSMs) in aerial images; the geometry of RSM polygons is analysed (skeletonization, neighbourhood and context analysis, pattern recognition) in order to obtain a coherent network of driving lanes. The technique is able to distinguish automatically between solid and broken lines. The method proposed was tested and proven to satisfactorily model driving lanes, including in complex situations like junctions, roundabouts or over- or underpasses.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    GI Forum [online]

  • ISSN

    2308-1708

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    AT - Rakouská republika

  • Počet stran výsledku

    14

  • Strana od-do

    122-135

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85122999583