Automatic Detection of Driving-Lane Geometry Based on Aerial Images and Existing Spatial Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F21%3A10435912" target="_blank" >RIV/00216208:11310/21:10435912 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kGBdkmPJ-X" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kGBdkmPJ-X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1553/giscience2021_02_s122" target="_blank" >10.1553/giscience2021_02_s122</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Detection of Driving-Lane Geometry Based on Aerial Images and Existing Spatial Data
Popis výsledku v původním jazyce
Spatial data are a key element of geographic information systems (GIS). With the growing computational power of modern GIS, the demand for accurate and up-to-date high definition (HD) spatial data grows accordingly and increases the requirements of data acquisition. To simplify and automate the process of obtaining HD road data, several methods have been created with different approaches and stages of automation. A new method combining high resolution aerial images and existing linear road data is presented in this article. The method models roads in a vector environment at the level of single driving lanes. Object-based image analysis (OBIA) is used to identify road surface markings (RSMs) in aerial images; the geometry of RSM polygons is analysed (skeletonization, neighbourhood and context analysis, pattern recognition) in order to obtain a coherent network of driving lanes. The technique is able to distinguish automatically between solid and broken lines. The method proposed was tested and proven to satisfactorily model driving lanes, including in complex situations like junctions, roundabouts or over- or underpasses.
Název v anglickém jazyce
Automatic Detection of Driving-Lane Geometry Based on Aerial Images and Existing Spatial Data
Popis výsledku anglicky
Spatial data are a key element of geographic information systems (GIS). With the growing computational power of modern GIS, the demand for accurate and up-to-date high definition (HD) spatial data grows accordingly and increases the requirements of data acquisition. To simplify and automate the process of obtaining HD road data, several methods have been created with different approaches and stages of automation. A new method combining high resolution aerial images and existing linear road data is presented in this article. The method models roads in a vector environment at the level of single driving lanes. Object-based image analysis (OBIA) is used to identify road surface markings (RSMs) in aerial images; the geometry of RSM polygons is analysed (skeletonization, neighbourhood and context analysis, pattern recognition) in order to obtain a coherent network of driving lanes. The technique is able to distinguish automatically between solid and broken lines. The method proposed was tested and proven to satisfactorily model driving lanes, including in complex situations like junctions, roundabouts or over- or underpasses.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
GI Forum [online]
ISSN
2308-1708
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
14
Strana od-do
122-135
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85122999583