Automated Detection and Vectorization of Road Elements in High Resolution Orthographic Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F23%3A00366659" target="_blank" >RIV/68407700:21260/23:00366659 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-111-2023" target="_blank" >https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-111-2023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-111-2023" target="_blank" >10.5194/isprs-archives-XLVIII-5-W2-2023-111-2023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Detection and Vectorization of Road Elements in High Resolution Orthographic Images
Popis výsledku v původním jazyce
This paper proposes, describes, and applies an algorithm for the automatic detection of selected elements of road infrastructure, along with the option to determine their spatial information. The principle is based on the evaluation of the color spectrum of the selected object on orthographic images. As a source image used for the processing, output from low-altitude aerial photogrammetry or terrestrial laser scanning can be used, together with the option to implement digital elevation models into the processing. The approach is based on the detection of the color composition of the selected element of the road, followed by clustering of the identified elements within the image and mathematical transformation of the clusters into a spatial vector form. Prior to the processing, the target objects are filtered out based on user input, for which vectorization is performed. The outputs are in the form of contours or the determined basic structure of the object. The main difference compared to existing methods is that the vectorization is only performed on the selected, pre-filtered parts of the raster image with identified target objects, not the whole image. This approach makes it possible to effectively and automatically identify and analyze, e.g., the edge of the road, road markings, or road features. This enables the subsequent implementation of the identified outputs into more complex spatial models of the road or its proximity. Additionally, the processing of the data to create a digital model of the environment can be automated, with a significant saving of time and related costs.
Název v anglickém jazyce
Automated Detection and Vectorization of Road Elements in High Resolution Orthographic Images
Popis výsledku anglicky
This paper proposes, describes, and applies an algorithm for the automatic detection of selected elements of road infrastructure, along with the option to determine their spatial information. The principle is based on the evaluation of the color spectrum of the selected object on orthographic images. As a source image used for the processing, output from low-altitude aerial photogrammetry or terrestrial laser scanning can be used, together with the option to implement digital elevation models into the processing. The approach is based on the detection of the color composition of the selected element of the road, followed by clustering of the identified elements within the image and mathematical transformation of the clusters into a spatial vector form. Prior to the processing, the target objects are filtered out based on user input, for which vectorization is performed. The outputs are in the form of contours or the determined basic structure of the object. The main difference compared to existing methods is that the vectorization is only performed on the selected, pre-filtered parts of the raster image with identified target objects, not the whole image. This approach makes it possible to effectively and automatically identify and analyze, e.g., the edge of the road, road markings, or road features. This enables the subsequent implementation of the identified outputs into more complex spatial models of the road or its proximity. Additionally, the processing of the data to create a digital model of the environment can be automated, with a significant saving of time and related costs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20104 - Transport engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ISPRS Archives
ISBN
—
ISSN
2194-9050
e-ISSN
2194-9050
Počet stran výsledku
6
Strana od-do
111-116
Název nakladatele
ISPRS
Místo vydání
Munich
Místo konání akce
Almaty
Datum konání akce
15. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—