Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automated Detection and Vectorization of Road Elements in High Resolution Orthographic Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F23%3A00366659" target="_blank" >RIV/68407700:21260/23:00366659 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-111-2023" target="_blank" >https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-111-2023</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-111-2023" target="_blank" >10.5194/isprs-archives-XLVIII-5-W2-2023-111-2023</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automated Detection and Vectorization of Road Elements in High Resolution Orthographic Images

  • Popis výsledku v původním jazyce

    This paper proposes, describes, and applies an algorithm for the automatic detection of selected elements of road infrastructure, along with the option to determine their spatial information. The principle is based on the evaluation of the color spectrum of the selected object on orthographic images. As a source image used for the processing, output from low-altitude aerial photogrammetry or terrestrial laser scanning can be used, together with the option to implement digital elevation models into the processing. The approach is based on the detection of the color composition of the selected element of the road, followed by clustering of the identified elements within the image and mathematical transformation of the clusters into a spatial vector form. Prior to the processing, the target objects are filtered out based on user input, for which vectorization is performed. The outputs are in the form of contours or the determined basic structure of the object. The main difference compared to existing methods is that the vectorization is only performed on the selected, pre-filtered parts of the raster image with identified target objects, not the whole image. This approach makes it possible to effectively and automatically identify and analyze, e.g., the edge of the road, road markings, or road features. This enables the subsequent implementation of the identified outputs into more complex spatial models of the road or its proximity. Additionally, the processing of the data to create a digital model of the environment can be automated, with a significant saving of time and related costs.

  • Název v anglickém jazyce

    Automated Detection and Vectorization of Road Elements in High Resolution Orthographic Images

  • Popis výsledku anglicky

    This paper proposes, describes, and applies an algorithm for the automatic detection of selected elements of road infrastructure, along with the option to determine their spatial information. The principle is based on the evaluation of the color spectrum of the selected object on orthographic images. As a source image used for the processing, output from low-altitude aerial photogrammetry or terrestrial laser scanning can be used, together with the option to implement digital elevation models into the processing. The approach is based on the detection of the color composition of the selected element of the road, followed by clustering of the identified elements within the image and mathematical transformation of the clusters into a spatial vector form. Prior to the processing, the target objects are filtered out based on user input, for which vectorization is performed. The outputs are in the form of contours or the determined basic structure of the object. The main difference compared to existing methods is that the vectorization is only performed on the selected, pre-filtered parts of the raster image with identified target objects, not the whole image. This approach makes it possible to effectively and automatically identify and analyze, e.g., the edge of the road, road markings, or road features. This enables the subsequent implementation of the identified outputs into more complex spatial models of the road or its proximity. Additionally, the processing of the data to create a digital model of the environment can be automated, with a significant saving of time and related costs.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20104 - Transport engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ISPRS Archives

  • ISBN

  • ISSN

    2194-9050

  • e-ISSN

    2194-9050

  • Počet stran výsledku

    6

  • Strana od-do

    111-116

  • Název nakladatele

    ISPRS

  • Místo vydání

    Munich

  • Místo konání akce

    Almaty

  • Datum konání akce

    15. 6. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku