A thermo-hydro-mechanical approach to soil slope stability under climate change
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10438900" target="_blank" >RIV/00216208:11310/22:10438900 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=UJIhj-.VQ4" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=UJIhj-.VQ4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomorph.2022.108108" target="_blank" >10.1016/j.geomorph.2022.108108</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A thermo-hydro-mechanical approach to soil slope stability under climate change
Popis výsledku v původním jazyce
Landslide initiation and dynamics are approached with different methods according to the scale of investigation. Individual landslides are typically described mechanistically, relying on the known coupling between the hydrological input - via atmosphere-soil interaction - and the mechanical response. As the scale increases, fully-coupled hydro-mechanical approaches gradually give way to simpler sequential couplings of hydrological and infinite slope or rigid block models, and finally to geostatistical models. At any scale, while the role of temperature in controlling evapotranspiration and thus the hydrological balance is well recognised, direct thermo-mechanical couplings are systematically neglected unless changes in water phase are involved. This contrasts with abundant experimental evidence of a fully-coupled thermo-hydro-mechanical behaviour of most geomaterials, even in ranges of temperature naturally experienced at the ground surface or in the near subsurface. Here, we review temperature-dependent processes that are potentially relevant to slope stability, focusing in particular on clayey slopes in temperate and warm regions. Our thought-provoking hypothesis is that temperature fluctuations and trends induced by climate change may exert, in short to long terms, a hydro-mechanical forcing on slopes (by altering permeability, water retention capacity, compressibility, shear strength). Together with other known effects (such as altered precipitation patterns and changes in land use), they could affect landslide activity and the distribution and frequency of slope failures. To verify this hypothesis across the scales, systematic field monitoring of temperature-related variables is necessary, together with geostatistical analyses entailing thermal remote sensing products. At the same time, fully-coupled approaches need to be upscaled to permit physically-based catchment- or regional-scale studies accounting for appropriate temperature-related variables and the inherent heterogeneity in materials and boundary conditions.
Název v anglickém jazyce
A thermo-hydro-mechanical approach to soil slope stability under climate change
Popis výsledku anglicky
Landslide initiation and dynamics are approached with different methods according to the scale of investigation. Individual landslides are typically described mechanistically, relying on the known coupling between the hydrological input - via atmosphere-soil interaction - and the mechanical response. As the scale increases, fully-coupled hydro-mechanical approaches gradually give way to simpler sequential couplings of hydrological and infinite slope or rigid block models, and finally to geostatistical models. At any scale, while the role of temperature in controlling evapotranspiration and thus the hydrological balance is well recognised, direct thermo-mechanical couplings are systematically neglected unless changes in water phase are involved. This contrasts with abundant experimental evidence of a fully-coupled thermo-hydro-mechanical behaviour of most geomaterials, even in ranges of temperature naturally experienced at the ground surface or in the near subsurface. Here, we review temperature-dependent processes that are potentially relevant to slope stability, focusing in particular on clayey slopes in temperate and warm regions. Our thought-provoking hypothesis is that temperature fluctuations and trends induced by climate change may exert, in short to long terms, a hydro-mechanical forcing on slopes (by altering permeability, water retention capacity, compressibility, shear strength). Together with other known effects (such as altered precipitation patterns and changes in land use), they could affect landslide activity and the distribution and frequency of slope failures. To verify this hypothesis across the scales, systematic field monitoring of temperature-related variables is necessary, together with geostatistical analyses entailing thermal remote sensing products. At the same time, fully-coupled approaches need to be upscaled to permit physically-based catchment- or regional-scale studies accounting for appropriate temperature-related variables and the inherent heterogeneity in materials and boundary conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-28853Y" target="_blank" >GJ20-28853Y: Vliv termohydromechanického sdružení na svahové deformace v expanzních jílech: pokročilé experimenty a hypoplastické modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geomorphology
ISSN
0169-555X
e-ISSN
1872-695X
Svazek periodika
401
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
108108
Kód UT WoS článku
000784307000007
EID výsledku v databázi Scopus
2-s2.0-85122818602