The challenge of measuring rock moisture - a laboratory experiment using eight types of sensors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10454570" target="_blank" >RIV/00216208:11310/22:10454570 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7ddrUwf50-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7ddrUwf50-</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomorph.2022.108430" target="_blank" >10.1016/j.geomorph.2022.108430</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The challenge of measuring rock moisture - a laboratory experiment using eight types of sensors
Popis výsledku v původním jazyce
Surface geomorphological processes and the decay of heritage buildings are amplified by rock weathering, which mostly either requires water or is augmented by its presence. Measuring of water content in rock is, however, challenging and different scientific aims require different approaches. To find the most suitable rock moisture investigation methods, we conducted an experiment using eight types of moisture measurement (1D resistivity, 2D resistivity, TDR, borehole humidity, microwave reflectance, capacitance, IR thermography, and uranine-probes) under controlled conditions in a sandstone block that was subject to a slow wetting and drying cycle and to a series of freeze-thaw cycles. Critical evaluation of methods shows that measurement of dielectric properties as a proxy of rock water content can be recommended for most research aims whether for long-term monitoring, non-destructive measurement of surface moisture patterns, or for applications in deeper areas of rock. Moreover, observation of moisture dynamics in deeper subsurface requires either drilling inside the rock or the use of ERT. To determine the location of the subsurface evaporation front, uranine-probes and borehole humidity sensors are recommended. Lastly, the specific nature of freeze-thaw environments shows that the use of 1D resistivity and TDR can outperform other methods tested, with TDR being more reliable than resistivity but lacking in defined depth moisture fluctuations. To challenge the disadvantages of tested methods, a combination of techniques should always be considered.
Název v anglickém jazyce
The challenge of measuring rock moisture - a laboratory experiment using eight types of sensors
Popis výsledku anglicky
Surface geomorphological processes and the decay of heritage buildings are amplified by rock weathering, which mostly either requires water or is augmented by its presence. Measuring of water content in rock is, however, challenging and different scientific aims require different approaches. To find the most suitable rock moisture investigation methods, we conducted an experiment using eight types of moisture measurement (1D resistivity, 2D resistivity, TDR, borehole humidity, microwave reflectance, capacitance, IR thermography, and uranine-probes) under controlled conditions in a sandstone block that was subject to a slow wetting and drying cycle and to a series of freeze-thaw cycles. Critical evaluation of methods shows that measurement of dielectric properties as a proxy of rock water content can be recommended for most research aims whether for long-term monitoring, non-destructive measurement of surface moisture patterns, or for applications in deeper areas of rock. Moreover, observation of moisture dynamics in deeper subsurface requires either drilling inside the rock or the use of ERT. To determine the location of the subsurface evaporation front, uranine-probes and borehole humidity sensors are recommended. Lastly, the specific nature of freeze-thaw environments shows that the use of 1D resistivity and TDR can outperform other methods tested, with TDR being more reliable than resistivity but lacking in defined depth moisture fluctuations. To challenge the disadvantages of tested methods, a combination of techniques should always be considered.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/TL03000603" target="_blank" >TL03000603: Skryto pod povrchem. Archeologické terény Pražského hradu, jejich ochrana a prezentace v moderním světě.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geomorphology
ISSN
0169-555X
e-ISSN
1872-695X
Svazek periodika
416
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
108430
Kód UT WoS článku
000860927300002
EID výsledku v databázi Scopus
2-s2.0-85137634578