Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparative Analysis of Feature and Intensity Based Image Registration Algorithms in Variable Agricultural Scenarios

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10456571" target="_blank" >RIV/00216208:11310/22:10456571 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-031-12413-6_12" target="_blank" >https://doi.org/10.1007/978-3-031-12413-6_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-12413-6_12" target="_blank" >10.1007/978-3-031-12413-6_12</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparative Analysis of Feature and Intensity Based Image Registration Algorithms in Variable Agricultural Scenarios

  • Popis výsledku v původním jazyce

    Image registration has widespread application in fields like medical imaging, satellite imagery and agriculture precision as it is essential for feature detection and extraction. The extent of this paper is focussed on analysis of intensity and feature-based registration algorithms over Blue and RedEdge multispectral images of wheat and cauliflower field under different altitudinal conditions i.e., drone imaging at 3 m for cauliflower and handheld imaging at 1 m for wheat crops. The overall comparison among feature and intensity-based algorithms is based on registration quality and time taken for feature matching. Intra-class comparison of feature-based registration is parameterized on type of transformation, number of features being detected, number of features matched, quality and feature matching time. Intra-class comparison of intensity-based registration algorithms is based on type of transformation, nature of alignment, quality and feature matching time. This study has considered SURF, MSER, KAZE, ORB for feature-based registration and Phase Correlation, Monomodal intensity and Multimodal intensity for intensity-based registration. Quantitatively, feature-based techniques were found superior to intensity-based techniques in terms of quality and computational time, where ORB and MSER scored highest. Among intensity-based methods, Monomodal intensity performed best in terms of registration quality. However, Phase Correlation marginally scored less in quality but fared well in terms of computational time.

  • Název v anglickém jazyce

    Comparative Analysis of Feature and Intensity Based Image Registration Algorithms in Variable Agricultural Scenarios

  • Popis výsledku anglicky

    Image registration has widespread application in fields like medical imaging, satellite imagery and agriculture precision as it is essential for feature detection and extraction. The extent of this paper is focussed on analysis of intensity and feature-based registration algorithms over Blue and RedEdge multispectral images of wheat and cauliflower field under different altitudinal conditions i.e., drone imaging at 3 m for cauliflower and handheld imaging at 1 m for wheat crops. The overall comparison among feature and intensity-based algorithms is based on registration quality and time taken for feature matching. Intra-class comparison of feature-based registration is parameterized on type of transformation, number of features being detected, number of features matched, quality and feature matching time. Intra-class comparison of intensity-based registration algorithms is based on type of transformation, nature of alignment, quality and feature matching time. This study has considered SURF, MSER, KAZE, ORB for feature-based registration and Phase Correlation, Monomodal intensity and Multimodal intensity for intensity-based registration. Quantitatively, feature-based techniques were found superior to intensity-based techniques in terms of quality and computational time, where ORB and MSER scored highest. Among intensity-based methods, Monomodal intensity performed best in terms of registration quality. However, Phase Correlation marginally scored less in quality but fared well in terms of computational time.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Third International Conference on Image Processing and Capsule Networks (ICIPCN 2022)

  • ISBN

    978-3-031-12412-9

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Počet stran výsledku

    18

  • Strana od-do

    143-160

  • Název nakladatele

    Springer International Publishing AG

  • Místo vydání

    CHAM

  • Místo konání akce

    ELECTR NETWORK, Bangkok

  • Datum konání akce

    20. 5. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000892628600012