Inverse Estimation of Soil Hydraulic Parameters in a Landslide Deposit Based on a DE-MC Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10457213" target="_blank" >RIV/00216208:11310/22:10457213 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cbTnXJu_nD" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cbTnXJu_nD</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/w14223693" target="_blank" >10.3390/w14223693</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inverse Estimation of Soil Hydraulic Parameters in a Landslide Deposit Based on a DE-MC Approach
Popis výsledku v původním jazyce
Extreme rainfall is a common triggering factor of landslide disasters, for infiltration and pore water pressure propagation can reduce suction stress and shear strength at the slip surface. The subsurface hydrological model is an essential component in the early-warning system of rainfall-triggered landslides, whereas soil moisture and pore water pressure simulated by the Darcy-Richards equation could be significantly affected by uncertainties in soil hydraulic parameters. This study conducted an inverse analysis of in situ measured soil moisture in an earthquake-induced landslide deposit, and the soil hydraulic parameters were optimized with the Differential Evolution Markov chain Monte Carlo method (DE-MC). The DE-MC approach was initially validated with a synthetic numerical experiment to demonstrate its effectiveness in finding the true soil hydraulic parameters. Besides, the soil water characteristic curve (SWCC) and hydraulic conductivity function (HCF) described with optimized soil hydraulic parameter sets had similar shapes despite the fact that soil hydraulic parameters may be different. Such equifinality phenomenon in inversely estimated soil hydraulic parameters, however, did not affect the performance of simulated soil moisture dynamics in the synthetic numerical experiment. The application of DE-MC to a real case study of a landslide deposit also indicated satisfying model performance in terms of accurate match between the in situ measured soil moisture content and ensemble of simulations. In conclusion, based on the satisfying performance of simulated soil moisture and the posterior probability density function (PDF) of parameter sets, the DE-MC approach can significantly reduce uncertainties in specified prior soil hydraulic parameters. This study suggested the integration of the DE-MC approach with the Darcy-Richards equation for an accurate quantification of unsaturated soil hydrology, which can be an essential modeling strategy to support the early-warning of rainfall-triggered landslides.
Název v anglickém jazyce
Inverse Estimation of Soil Hydraulic Parameters in a Landslide Deposit Based on a DE-MC Approach
Popis výsledku anglicky
Extreme rainfall is a common triggering factor of landslide disasters, for infiltration and pore water pressure propagation can reduce suction stress and shear strength at the slip surface. The subsurface hydrological model is an essential component in the early-warning system of rainfall-triggered landslides, whereas soil moisture and pore water pressure simulated by the Darcy-Richards equation could be significantly affected by uncertainties in soil hydraulic parameters. This study conducted an inverse analysis of in situ measured soil moisture in an earthquake-induced landslide deposit, and the soil hydraulic parameters were optimized with the Differential Evolution Markov chain Monte Carlo method (DE-MC). The DE-MC approach was initially validated with a synthetic numerical experiment to demonstrate its effectiveness in finding the true soil hydraulic parameters. Besides, the soil water characteristic curve (SWCC) and hydraulic conductivity function (HCF) described with optimized soil hydraulic parameter sets had similar shapes despite the fact that soil hydraulic parameters may be different. Such equifinality phenomenon in inversely estimated soil hydraulic parameters, however, did not affect the performance of simulated soil moisture dynamics in the synthetic numerical experiment. The application of DE-MC to a real case study of a landslide deposit also indicated satisfying model performance in terms of accurate match between the in situ measured soil moisture content and ensemble of simulations. In conclusion, based on the satisfying performance of simulated soil moisture and the posterior probability density function (PDF) of parameter sets, the DE-MC approach can significantly reduce uncertainties in specified prior soil hydraulic parameters. This study suggested the integration of the DE-MC approach with the Darcy-Richards equation for an accurate quantification of unsaturated soil hydrology, which can be an essential modeling strategy to support the early-warning of rainfall-triggered landslides.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Water
ISSN
2073-4441
e-ISSN
2073-4441
Svazek periodika
14
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
3693
Kód UT WoS článku
000887886600001
EID výsledku v databázi Scopus
2-s2.0-85142440228