Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Reduce uncertainty in soil hydrological modeling: A comparison of soil hydraulic parameters generated by random sampling and pedotransfer function

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10469937" target="_blank" >RIV/00216208:11310/23:10469937 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=en_DbHvMzv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=en_DbHvMzv</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jhydrol.2023.129740" target="_blank" >10.1016/j.jhydrol.2023.129740</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Reduce uncertainty in soil hydrological modeling: A comparison of soil hydraulic parameters generated by random sampling and pedotransfer function

  • Popis výsledku v původním jazyce

    Numerical simulation of unsaturated soil hydrology relies on calibrated soil hydraulic parameters, which are subject to uncertainty due to imperfect information during the inverse modelling. This study investigates the effectiveness of reducing parameter uncertainty using the recently developed Rosetta 3 pedotransfer function. The GLUE method was employed for numerical modeling using the Darcy-Richards equation under two strategies for sampling Mualem-van Genuchten (MvG) parameters: the first uses conventional random generation of MvG parameters (GLUE-random), while the second adopts Rosetta 3 to transfer soil particle composition to MvG parameter (GLUE-Rosetta). Both approaches were used for inverse modeling of 9 typical soils, each with a recommended parameter set defined as true values and associated soil moisture dynamics as observations. The posterior parameters selected with both GLUE-random and GLUE-Rosetta show an equifinality phenomenon. GLUE-random fails to provide well-constrained posterior parameters to recover the pre-defined true values, and its posterior results of soil water characteristic curve (SWCC) and soil hydraulic conductivity function (HCF) are poorly constrained. In contrast, GLUE-Rosetta significantly improves the accuracy of the inversely-estimated soil hydraulic parameters, and the ensemble of posterior SWCC and HCF also encompasses the predefined true curves. The results demonstrate the effectiveness of using Rosetta 3 to reduce the dimensionality of the opti-mization problem, which results in reliable estimation of soil hydraulic parameters and soil particle composi-tions. Moreover, GLUE-Rosetta outperforms GLUE-random in predicting soil moisture dynamics under different rainfall intensities. Overall, it is recommended to integrate Rosetta 3 with existing optimization tools to reduce the uncertainty of soil parameters and support more reliable modeling of unsaturated soil hydrology.

  • Název v anglickém jazyce

    Reduce uncertainty in soil hydrological modeling: A comparison of soil hydraulic parameters generated by random sampling and pedotransfer function

  • Popis výsledku anglicky

    Numerical simulation of unsaturated soil hydrology relies on calibrated soil hydraulic parameters, which are subject to uncertainty due to imperfect information during the inverse modelling. This study investigates the effectiveness of reducing parameter uncertainty using the recently developed Rosetta 3 pedotransfer function. The GLUE method was employed for numerical modeling using the Darcy-Richards equation under two strategies for sampling Mualem-van Genuchten (MvG) parameters: the first uses conventional random generation of MvG parameters (GLUE-random), while the second adopts Rosetta 3 to transfer soil particle composition to MvG parameter (GLUE-Rosetta). Both approaches were used for inverse modeling of 9 typical soils, each with a recommended parameter set defined as true values and associated soil moisture dynamics as observations. The posterior parameters selected with both GLUE-random and GLUE-Rosetta show an equifinality phenomenon. GLUE-random fails to provide well-constrained posterior parameters to recover the pre-defined true values, and its posterior results of soil water characteristic curve (SWCC) and soil hydraulic conductivity function (HCF) are poorly constrained. In contrast, GLUE-Rosetta significantly improves the accuracy of the inversely-estimated soil hydraulic parameters, and the ensemble of posterior SWCC and HCF also encompasses the predefined true curves. The results demonstrate the effectiveness of using Rosetta 3 to reduce the dimensionality of the opti-mization problem, which results in reliable estimation of soil hydraulic parameters and soil particle composi-tions. Moreover, GLUE-Rosetta outperforms GLUE-random in predicting soil moisture dynamics under different rainfall intensities. Overall, it is recommended to integrate Rosetta 3 with existing optimization tools to reduce the uncertainty of soil parameters and support more reliable modeling of unsaturated soil hydrology.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Hydrology

  • ISSN

    0022-1694

  • e-ISSN

    1879-2707

  • Svazek periodika

    623

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

    129740

  • Kód UT WoS článku

    001023829700001

  • EID výsledku v databázi Scopus

    2-s2.0-85161694897