An incremental facility location clustering with a new hybrid constrained pseudometric
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10425607" target="_blank" >RIV/00216208:11310/23:10425607 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10425607 RIV/49777513:23520/23:43969884
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8Ufb9qYPDz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8Ufb9qYPDz</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patcog.2023.109520" target="_blank" >10.1016/j.patcog.2023.109520</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An incremental facility location clustering with a new hybrid constrained pseudometric
Popis výsledku v původním jazyce
The Euclidean metric, one of the classical similarity measures applied in clustering algorithms, has drawbacks when applied to spatial clustering. The resulting clusters are spherical and similarly sized, and the edges of objects are considerably smoothed. This paper proposes a novel hybrid constrained pseudometric formed by the linear combination of the Euclidean metric and a pseudometric plus penalty. The pseudometric is used in a new deterministic incremental heuristic facility location algorithm (IHFL). Our method generates larger, isotropic, and partially overlapping clusters of different sizes and spatial densities, better adapting to the surface complexity than the classical non-deterministic clustering. Cluster properties are used to derive new features for supervised/unsupervised learning. Possible applications are the classification of point clouds, their simplification, detection, filtering, and extraction of different structural patterns or sampled objects. Experiments were run on point clouds derived from laser scanning and images.
Název v anglickém jazyce
An incremental facility location clustering with a new hybrid constrained pseudometric
Popis výsledku anglicky
The Euclidean metric, one of the classical similarity measures applied in clustering algorithms, has drawbacks when applied to spatial clustering. The resulting clusters are spherical and similarly sized, and the edges of objects are considerably smoothed. This paper proposes a novel hybrid constrained pseudometric formed by the linear combination of the Euclidean metric and a pseudometric plus penalty. The pseudometric is used in a new deterministic incremental heuristic facility location algorithm (IHFL). Our method generates larger, isotropic, and partially overlapping clusters of different sizes and spatial densities, better adapting to the surface complexity than the classical non-deterministic clustering. Cluster properties are used to derive new features for supervised/unsupervised learning. Possible applications are the classification of point clouds, their simplification, detection, filtering, and extraction of different structural patterns or sampled objects. Experiments were run on point clouds derived from laser scanning and images.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pattern Recognition
ISSN
0031-3203
e-ISSN
1873-5142
Svazek periodika
141
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
109520
Kód UT WoS článku
000992216400001
EID výsledku v databázi Scopus
2-s2.0-85153671852