Constructing Collective Variables Using Invariant Learned Representations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10465875" target="_blank" >RIV/00216208:11310/23:10465875 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10465875
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Td0I5YqVWm" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Td0I5YqVWm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.2c00729" target="_blank" >10.1021/acs.jctc.2c00729</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Constructing Collective Variables Using Invariant Learned Representations
Popis výsledku v původním jazyce
On the time scales accessible to atomistic numerical modeling, chemical reactions are considered rare events. Therefore, the atomistic simulations are commonly biased along a lowdimensional representation of a chemical reaction in an atomic structure space, i.e., along the collective variables. However, suitable collective variables are often complicated to guess a priori. We propose a novel method of collective variable discovery based on dimensionality reduction of the atomic representation vectors. These linear-scaling and invariant representations can be either fixed (untrained) or learned by supervised training of the end-to-end machine learning potential. The learned representations are expected to reflect not only the structural but also the energetic features of the system that are transferable to all of the reactive transformation covered by the machine learning potential. We demonstrate our approach on four high-barrier reactions ranging from a simple gas-phase hydrogen jump reaction to complex reactions in periodic models of industrially relevant heterogeneous catalysts. High data efficiency, automatized feature extraction, favorable scaling, and retention of inherent invariances are all properties that are expected to enable fast and largely automatic construction of suitable collective variables even in highly complex reactive scenarios such as reactive/catalytic transformations at solid-liquid interfaces.
Název v anglickém jazyce
Constructing Collective Variables Using Invariant Learned Representations
Popis výsledku anglicky
On the time scales accessible to atomistic numerical modeling, chemical reactions are considered rare events. Therefore, the atomistic simulations are commonly biased along a lowdimensional representation of a chemical reaction in an atomic structure space, i.e., along the collective variables. However, suitable collective variables are often complicated to guess a priori. We propose a novel method of collective variable discovery based on dimensionality reduction of the atomic representation vectors. These linear-scaling and invariant representations can be either fixed (untrained) or learned by supervised training of the end-to-end machine learning potential. The learned representations are expected to reflect not only the structural but also the energetic features of the system that are transferable to all of the reactive transformation covered by the machine learning potential. We demonstrate our approach on four high-barrier reactions ranging from a simple gas-phase hydrogen jump reaction to complex reactions in periodic models of industrially relevant heterogeneous catalysts. High data efficiency, automatized feature extraction, favorable scaling, and retention of inherent invariances are all properties that are expected to enable fast and largely automatic construction of suitable collective variables even in highly complex reactive scenarios such as reactive/catalytic transformations at solid-liquid interfaces.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
1549-9626
Svazek periodika
19
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
887-901
Kód UT WoS článku
000933891600001
EID výsledku v databázi Scopus
2-s2.0-85147209622