Flood Simulations Using a Sensor Network and Support Vector Machine Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10470082" target="_blank" >RIV/00216208:11310/23:10470082 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AJjJa0eZ-P" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=AJjJa0eZ-P</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/w15112004" target="_blank" >10.3390/w15112004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Flood Simulations Using a Sensor Network and Support Vector Machine Model
Popis výsledku v původním jazyce
This study aims to couple the support vector machine (SVM) model with a hydrometeorological wireless sensor network to simulate different types of flood events in a montane basin. The model was tested in the mid-latitude montane basin of Vydra in the Sumava Mountains, Central Europe, featuring complex physiography, high dynamics of hydrometeorological processes, and the occurrence of different types of floods. The basin is equipped with a sensor network operating in headwaters along with the conventional long-term monitoring in the outlet. The model was trained and validated using hydrological observations from 2011 to 2021, and performance was assessed using metrics such as R(2), NSE, KGE, and RMSE. The model was run using both hourly and daily timesteps to evaluate the effect of timestep aggregation. Model setup and deployment utilized the KNIME software platform, LibSVM library, and Python packages. Sensitivity analysis was performed to determine the optimal configuration of the SVR model parameters (C, N, and E). Among 125 simulation variants, an optimal parameter configuration was identified that resulted in improved model performance and better fit for peak flows. The sensitivity analysis demonstrated the robustness of the SVR model, as different parameter variations yielded reasonable performances, with NSE values ranging from 0.791 to 0.873 for a complex hydrological year. Simulation results for different flood scenarios showed the reliability of the model in reconstructing different types of floods. The model accurately captured trend fitting, event timing, peaks, and flood volumes without significant errors. Performance was generally higher using a daily timestep, with mean metric values R(2) = 0.963 and NSE = 0.880, compared to mean R(2) = 0.913 and NSE = 0.820 using an hourly timestep, for all 12 flood scenarios. The very good performance even for complex flood events such as rain-on-snow floods combined with the fast computation makes this a promising approach for applications.
Název v anglickém jazyce
Flood Simulations Using a Sensor Network and Support Vector Machine Model
Popis výsledku anglicky
This study aims to couple the support vector machine (SVM) model with a hydrometeorological wireless sensor network to simulate different types of flood events in a montane basin. The model was tested in the mid-latitude montane basin of Vydra in the Sumava Mountains, Central Europe, featuring complex physiography, high dynamics of hydrometeorological processes, and the occurrence of different types of floods. The basin is equipped with a sensor network operating in headwaters along with the conventional long-term monitoring in the outlet. The model was trained and validated using hydrological observations from 2011 to 2021, and performance was assessed using metrics such as R(2), NSE, KGE, and RMSE. The model was run using both hourly and daily timesteps to evaluate the effect of timestep aggregation. Model setup and deployment utilized the KNIME software platform, LibSVM library, and Python packages. Sensitivity analysis was performed to determine the optimal configuration of the SVR model parameters (C, N, and E). Among 125 simulation variants, an optimal parameter configuration was identified that resulted in improved model performance and better fit for peak flows. The sensitivity analysis demonstrated the robustness of the SVR model, as different parameter variations yielded reasonable performances, with NSE values ranging from 0.791 to 0.873 for a complex hydrological year. Simulation results for different flood scenarios showed the reliability of the model in reconstructing different types of floods. The model accurately captured trend fitting, event timing, peaks, and flood volumes without significant errors. Performance was generally higher using a daily timestep, with mean metric values R(2) = 0.963 and NSE = 0.880, compared to mean R(2) = 0.913 and NSE = 0.820 using an hourly timestep, for all 12 flood scenarios. The very good performance even for complex flood events such as rain-on-snow floods combined with the fast computation makes this a promising approach for applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Water
ISSN
2073-4441
e-ISSN
2073-4441
Svazek periodika
15
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
27
Strana od-do
2004
Kód UT WoS článku
001005406700001
EID výsledku v databázi Scopus
2-s2.0-85161321334