Multi-dimensional population balance model development using a breakage mode probability kernel for prediction of multiple granule attributes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10472933" target="_blank" >RIV/00216208:11310/23:10472933 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5-aw0CLPiF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5-aw0CLPiF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10837450.2023.2231074" target="_blank" >10.1080/10837450.2023.2231074</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-dimensional population balance model development using a breakage mode probability kernel for prediction of multiple granule attributes
Popis výsledku v původním jazyce
Milling affects not only particle size distributions but also other important granule quality attributes, such as API content and porosity, which can have a significant impact on the quality of the final drug form. The ability to understand and predict the effects of milling conditions on these attributes is crucial. A hybrid population balance model (PBM) was developed to model the Comil, which was validated using experimental results with an R(2) of above 0.9. This presented model is dependent on the process conditions, material properties and equipment geometry, such as the classification screen size. In order to incorporate the effects of different quality attributes in the model physics, the dimensionality of the PBM was increased to account for changes in API content and porosity, which also produced predictions for these attributes in the results. Additionally, a breakage mode probability kernel was used to introduce dynamic breakage modes by predicting the probability of attrition and impact mode, which are dependent on the process conditions and feed properties at each timestep.
Název v anglickém jazyce
Multi-dimensional population balance model development using a breakage mode probability kernel for prediction of multiple granule attributes
Popis výsledku anglicky
Milling affects not only particle size distributions but also other important granule quality attributes, such as API content and porosity, which can have a significant impact on the quality of the final drug form. The ability to understand and predict the effects of milling conditions on these attributes is crucial. A hybrid population balance model (PBM) was developed to model the Comil, which was validated using experimental results with an R(2) of above 0.9. This presented model is dependent on the process conditions, material properties and equipment geometry, such as the classification screen size. In order to incorporate the effects of different quality attributes in the model physics, the dimensionality of the PBM was increased to account for changes in API content and porosity, which also produced predictions for these attributes in the results. Additionally, a breakage mode probability kernel was used to introduce dynamic breakage modes by predicting the probability of attrition and impact mode, which are dependent on the process conditions and feed properties at each timestep.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pharmaceutical Development and Technology
ISSN
1083-7450
e-ISSN
1097-9867
Svazek periodika
28
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
638-649
Kód UT WoS článku
001026756000001
EID výsledku v databázi Scopus
2-s2.0-85165174415