Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic forest cover classification using Sentinel-2 multispectral satellite data and machine learning algorithms in Google Earth Engine

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10476948" target="_blank" >RIV/00216208:11310/23:10476948 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dcHh9e7F2Y" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dcHh9e7F2Y</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic forest cover classification using Sentinel-2 multispectral satellite data and machine learning algorithms in Google Earth Engine

  • Popis výsledku v původním jazyce

    Forest cover plays an essential role in maintaining ecological equilibrium, mitigating climate change, and securing a sustainable future for both humanity and the planet. Most countries conduct forest inventory or remote sensing surveys every few years to monitor changes in forest cover. However, only a few initiatives offer more frequent updates, typically weekly or monthly, focusing exclusively on areas experiencing high rates of deforestation or those of significant ecological value. The present study focuses on the classification of forest cover throughout Slovakia, covering the period 2017-2022, using Sentinel-2 multispectral satellite imagery along with the machine learning (ML) algorithms Random Forest (RF) and Support Vector Machine (SVM). The computation was performed in the cloud-based Google Earth Engine (GEE) platform, which offers a versatile interface for a broad range of computational capabilities for geospatial analysis and landscape monitoring. Forest cover change processing and evaluation is based on the RF classification algorithm, which demonstrated higher accuracy than the SVM classifier. The results indicate that RF outperformed SVM by 4% and 21% in 2017 and 2020, respectively. The RF algorithm achieved an overall accuracy (OA) of 95% in both classification cases (2017 and 2020) and F1 score of up to 0.95. The selected RF algorithm revealed an increase in forest cover in Slovakia, particularly notable during the period 2017-2019, with a slight decrease detected between 2019 and 2020. Furthermore, it was determined that the current forest cover is lower than that reported in official state statistics and land cover databases. Additionally, a user-friendly automatic tool for forest cover classification was developed and made freely available in GEE. This tool can benefit foresters, urban planners, and everyday users by detecting subtle changes in forest cover, crucial for forest sustainability and human well-being.

  • Název v anglickém jazyce

    Automatic forest cover classification using Sentinel-2 multispectral satellite data and machine learning algorithms in Google Earth Engine

  • Popis výsledku anglicky

    Forest cover plays an essential role in maintaining ecological equilibrium, mitigating climate change, and securing a sustainable future for both humanity and the planet. Most countries conduct forest inventory or remote sensing surveys every few years to monitor changes in forest cover. However, only a few initiatives offer more frequent updates, typically weekly or monthly, focusing exclusively on areas experiencing high rates of deforestation or those of significant ecological value. The present study focuses on the classification of forest cover throughout Slovakia, covering the period 2017-2022, using Sentinel-2 multispectral satellite imagery along with the machine learning (ML) algorithms Random Forest (RF) and Support Vector Machine (SVM). The computation was performed in the cloud-based Google Earth Engine (GEE) platform, which offers a versatile interface for a broad range of computational capabilities for geospatial analysis and landscape monitoring. Forest cover change processing and evaluation is based on the RF classification algorithm, which demonstrated higher accuracy than the SVM classifier. The results indicate that RF outperformed SVM by 4% and 21% in 2017 and 2020, respectively. The RF algorithm achieved an overall accuracy (OA) of 95% in both classification cases (2017 and 2020) and F1 score of up to 0.95. The selected RF algorithm revealed an increase in forest cover in Slovakia, particularly notable during the period 2017-2019, with a slight decrease detected between 2019 and 2020. Furthermore, it was determined that the current forest cover is lower than that reported in official state statistics and land cover databases. Additionally, a user-friendly automatic tool for forest cover classification was developed and made freely available in GEE. This tool can benefit foresters, urban planners, and everyday users by detecting subtle changes in forest cover, crucial for forest sustainability and human well-being.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Geographica Universitatis Comenianae

  • ISSN

    1338-6034

  • e-ISSN

  • Svazek periodika

    67

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    SK - Slovenská republika

  • Počet stran výsledku

    23

  • Strana od-do

    163-185

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85180643497