Remote sensing based forest cover classification using machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254642" target="_blank" >RIV/61989100:27240/24:10254642 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-023-50863-1" target="_blank" >https://www.nature.com/articles/s41598-023-50863-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-023-50863-1" target="_blank" >10.1038/s41598-023-50863-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Remote sensing based forest cover classification using machine learning
Popis výsledku v původním jazyce
Pakistan falls significantly below the recommended forest coverage level of 20 to 30 percent of total area, with less than 6 percent of its land under forest cover. This deficiency is primarily attributed to illicit deforestation for wood and charcoal, coupled with a failure to embrace advanced techniques for forest estimation, monitoring, and supervision. Remote sensing techniques leveraging Sentinel-2 satellite images were employed. Both single-layer stacked images and temporal layer stacked images from various dates were utilized for forest classification. The application of an artificial neural network (ANN) supervised classification algorithm yielded notable results. Using a single-layer stacked image from Sentinel-2, an impressive 91.37% training overall accuracy and 0.865 kappa coefficient were achieved, along with 93.77% testing overall accuracy and a 0.902 kappa coefficient. Furthermore, the temporal layer stacked image approach demonstrated even better results. This method yielded 98.07% overall training accuracy, 97.75% overall testing accuracy, and kappa coefficients of 0.970 and 0.965, respectively. The random forest (RF) algorithm, when applied, achieved 99.12% overall training accuracy, 92.90% testing accuracy, and kappa coefficients of 0.986 and 0.882. Notably, with the temporal layer stacked image of the Sentinel-2 satellite, the RF algorithm reached exceptional performance with 99.79% training accuracy, 96.98% validation accuracy, and kappa coefficients of 0.996 and 0.954. In terms of forest cover estimation, the ANN algorithm identified 31.07% total forest coverage in the District Abbottabad region. In comparison, the RF algorithm recorded a slightly higher 31.17% of the total forested area. This research highlights the potential of advanced remote sensing techniques and machine learning algorithms in improving forest cover assessment and monitoring strategies. (C) 2024, The Author(s).
Název v anglickém jazyce
Remote sensing based forest cover classification using machine learning
Popis výsledku anglicky
Pakistan falls significantly below the recommended forest coverage level of 20 to 30 percent of total area, with less than 6 percent of its land under forest cover. This deficiency is primarily attributed to illicit deforestation for wood and charcoal, coupled with a failure to embrace advanced techniques for forest estimation, monitoring, and supervision. Remote sensing techniques leveraging Sentinel-2 satellite images were employed. Both single-layer stacked images and temporal layer stacked images from various dates were utilized for forest classification. The application of an artificial neural network (ANN) supervised classification algorithm yielded notable results. Using a single-layer stacked image from Sentinel-2, an impressive 91.37% training overall accuracy and 0.865 kappa coefficient were achieved, along with 93.77% testing overall accuracy and a 0.902 kappa coefficient. Furthermore, the temporal layer stacked image approach demonstrated even better results. This method yielded 98.07% overall training accuracy, 97.75% overall testing accuracy, and kappa coefficients of 0.970 and 0.965, respectively. The random forest (RF) algorithm, when applied, achieved 99.12% overall training accuracy, 92.90% testing accuracy, and kappa coefficients of 0.986 and 0.882. Notably, with the temporal layer stacked image of the Sentinel-2 satellite, the RF algorithm reached exceptional performance with 99.79% training accuracy, 96.98% validation accuracy, and kappa coefficients of 0.996 and 0.954. In terms of forest cover estimation, the ANN algorithm identified 31.07% total forest coverage in the District Abbottabad region. In comparison, the RF algorithm recorded a slightly higher 31.17% of the total forested area. This research highlights the potential of advanced remote sensing techniques and machine learning algorithms in improving forest cover assessment and monitoring strategies. (C) 2024, The Author(s).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
001163663800148
EID výsledku v databázi Scopus
2-s2.0-85181254477