Prediction of California bearing ratio and modified proctor parameters using deep neural networks and multiple linear regression: A case study of granular soils
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10480389" target="_blank" >RIV/00216208:11310/24:10480389 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dTXb14krTm" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dTXb14krTm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cscm.2023.e02800" target="_blank" >10.1016/j.cscm.2023.e02800</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of California bearing ratio and modified proctor parameters using deep neural networks and multiple linear regression: A case study of granular soils
Popis výsledku v původním jazyce
The California Bearing Ratio (CBR) and modified proctor parameters belong to the soil geotechnical properties used to assess soil behavior. Direct measurement of these properties can be quite time-consuming in large-scale applications or when immediate results are required. Therefore, significant research efforts have been made in the literature to develop indirect methods for their estimation. However, some gaps in the state-of-the-art can be highlighted in these topics, such as the deficiency in computational models to calculate the maximum dry unit weight (γd(max)), optimum moisture content (ω(opt)) and CBR, and the lack of methods that consider their intrinsic influence on each other. Hence, in this investigation, mathematical and computational models were created to obtain the above-mentioned variables from the soil grain size distribution. The mathematical model was based on Multiple Linear Regression (MLR) correlations. Meanwhile, the computational model was constructed from a custom-made Deep Neural Networks (DNNs) architecture. Subsequently, the accuracy of these models was validated with an experimental case study. The results demonstrated that the proposed methods in this study are more precise than previous approaches in the literature. Accordingly, the main contribution of this manuscript to the industry is the formation of models with high exactness to predict the γd(max), ω(opt) and CBR of granular soils.
Název v anglickém jazyce
Prediction of California bearing ratio and modified proctor parameters using deep neural networks and multiple linear regression: A case study of granular soils
Popis výsledku anglicky
The California Bearing Ratio (CBR) and modified proctor parameters belong to the soil geotechnical properties used to assess soil behavior. Direct measurement of these properties can be quite time-consuming in large-scale applications or when immediate results are required. Therefore, significant research efforts have been made in the literature to develop indirect methods for their estimation. However, some gaps in the state-of-the-art can be highlighted in these topics, such as the deficiency in computational models to calculate the maximum dry unit weight (γd(max)), optimum moisture content (ω(opt)) and CBR, and the lack of methods that consider their intrinsic influence on each other. Hence, in this investigation, mathematical and computational models were created to obtain the above-mentioned variables from the soil grain size distribution. The mathematical model was based on Multiple Linear Regression (MLR) correlations. Meanwhile, the computational model was constructed from a custom-made Deep Neural Networks (DNNs) architecture. Subsequently, the accuracy of these models was validated with an experimental case study. The results demonstrated that the proposed methods in this study are more precise than previous approaches in the literature. Accordingly, the main contribution of this manuscript to the industry is the formation of models with high exactness to predict the γd(max), ω(opt) and CBR of granular soils.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/GC21-35764J" target="_blank" >GC21-35764J: Experimentální a numerické studium sdruženého termo-hydro-mechanického chování jílu s důrazem na cyklické zatěžování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Case Studies in Construction Materials
ISSN
2214-5095
e-ISSN
2214-5095
Svazek periodika
20
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
e02800
Kód UT WoS článku
001147759200001
EID výsledku v databázi Scopus
2-s2.0-85181000659