Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Prediction of California bearing ratio and modified proctor parameters using deep neural networks and multiple linear regression: A case study of granular soils

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10480389" target="_blank" >RIV/00216208:11310/24:10480389 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dTXb14krTm" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=dTXb14krTm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cscm.2023.e02800" target="_blank" >10.1016/j.cscm.2023.e02800</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Prediction of California bearing ratio and modified proctor parameters using deep neural networks and multiple linear regression: A case study of granular soils

  • Popis výsledku v původním jazyce

    The California Bearing Ratio (CBR) and modified proctor parameters belong to the soil geotechnical properties used to assess soil behavior. Direct measurement of these properties can be quite time-consuming in large-scale applications or when immediate results are required. Therefore, significant research efforts have been made in the literature to develop indirect methods for their estimation. However, some gaps in the state-of-the-art can be highlighted in these topics, such as the deficiency in computational models to calculate the maximum dry unit weight (γd(max)), optimum moisture content (ω(opt)) and CBR, and the lack of methods that consider their intrinsic influence on each other. Hence, in this investigation, mathematical and computational models were created to obtain the above-mentioned variables from the soil grain size distribution. The mathematical model was based on Multiple Linear Regression (MLR) correlations. Meanwhile, the computational model was constructed from a custom-made Deep Neural Networks (DNNs) architecture. Subsequently, the accuracy of these models was validated with an experimental case study. The results demonstrated that the proposed methods in this study are more precise than previous approaches in the literature. Accordingly, the main contribution of this manuscript to the industry is the formation of models with high exactness to predict the γd(max), ω(opt) and CBR of granular soils.

  • Název v anglickém jazyce

    Prediction of California bearing ratio and modified proctor parameters using deep neural networks and multiple linear regression: A case study of granular soils

  • Popis výsledku anglicky

    The California Bearing Ratio (CBR) and modified proctor parameters belong to the soil geotechnical properties used to assess soil behavior. Direct measurement of these properties can be quite time-consuming in large-scale applications or when immediate results are required. Therefore, significant research efforts have been made in the literature to develop indirect methods for their estimation. However, some gaps in the state-of-the-art can be highlighted in these topics, such as the deficiency in computational models to calculate the maximum dry unit weight (γd(max)), optimum moisture content (ω(opt)) and CBR, and the lack of methods that consider their intrinsic influence on each other. Hence, in this investigation, mathematical and computational models were created to obtain the above-mentioned variables from the soil grain size distribution. The mathematical model was based on Multiple Linear Regression (MLR) correlations. Meanwhile, the computational model was constructed from a custom-made Deep Neural Networks (DNNs) architecture. Subsequently, the accuracy of these models was validated with an experimental case study. The results demonstrated that the proposed methods in this study are more precise than previous approaches in the literature. Accordingly, the main contribution of this manuscript to the industry is the formation of models with high exactness to predict the γd(max), ω(opt) and CBR of granular soils.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10505 - Geology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC21-35764J" target="_blank" >GC21-35764J: Experimentální a numerické studium sdruženého termo-hydro-mechanického chování jílu s důrazem na cyklické zatěžování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Case Studies in Construction Materials

  • ISSN

    2214-5095

  • e-ISSN

    2214-5095

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    17

  • Strana od-do

    e02800

  • Kód UT WoS článku

    001147759200001

  • EID výsledku v databázi Scopus

    2-s2.0-85181000659