Evidence of field-scale shifts in transpiration dynamics following bark beetle infestation: Stomatal conductance responses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10481166" target="_blank" >RIV/00216208:11310/24:10481166 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BCbtv-gpDy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BCbtv-gpDy</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/hyp.15162" target="_blank" >10.1002/hyp.15162</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evidence of field-scale shifts in transpiration dynamics following bark beetle infestation: Stomatal conductance responses
Popis výsledku v původním jazyce
Amplified eruptive outbreaks of bark beetles as a consequence of climate change can cause tree mortality that significantly affects terrestrial water and carbon fluxes. However, the lack of field-scale observations of underlying physiological mechanisms currently hampers the expression of such ecosystem disturbances in predictive modelling. Based on a unique flux tower dataset from a subalpine forest located in the Rocky Mountains, mechanisms of stomatal response to an extensive bark beetle outbreak were investigated using various models and parametrizations. The datasets cover a decade, including the periods of pre-infestation, infestation, and post-infestation. Field measurements showed considerable decreases in evapotranspiration (ET), transpiration (T), and leaf area index (LAI) during the two-year infestation period compared to the pre-infestation period. Model interpretations of observed water and carbon fluxes indicated that the overall reductions in T were not solely due to decreased LAI, but also to changes in physiological behaviours. The summer season's canopy-scale stomatal conductance was significantly reduced during the infestation period, from 0.0018 to 0.0011 m s(-1). One primary reason for the observed variations is likely that the bark beetle infestation hampers the water transport in the xylem. The damage of xylem has important implications for water use efficiency (WUE), which also significantly influences the parameterization of stomatal conductance. When using stomatal conductance models to forecast ecosystem dynamics, it is crucial to recalibrate the model's parameters to ensure the accurate depiction of stomatal dynamics during various infestation periods. The neglect of the temporal variability of canopy-scale stomatal conductance under ecosystem disturbances (e.g., bark beetle infestations) in current earth system models, therefore, requires specific attention in assessments of large-scale water and carbon balances. By comparing the simulation accuracy of stomatal conductance and transpiration under an evolution-varied parameterization (considering all infestation stages) and a pre-infestation-fixed parameterization (considering undisturbed conditions) of three stomatal conductance models (Ball-Berry, Leuning, and Medlyn model), the impact of bark beetle infestation was identified. The findings highlight that the overall transpiration reduction was not only caused by reduced LAI, but also by changing physiological behaviour, which was neglected by all current models. image
Název v anglickém jazyce
Evidence of field-scale shifts in transpiration dynamics following bark beetle infestation: Stomatal conductance responses
Popis výsledku anglicky
Amplified eruptive outbreaks of bark beetles as a consequence of climate change can cause tree mortality that significantly affects terrestrial water and carbon fluxes. However, the lack of field-scale observations of underlying physiological mechanisms currently hampers the expression of such ecosystem disturbances in predictive modelling. Based on a unique flux tower dataset from a subalpine forest located in the Rocky Mountains, mechanisms of stomatal response to an extensive bark beetle outbreak were investigated using various models and parametrizations. The datasets cover a decade, including the periods of pre-infestation, infestation, and post-infestation. Field measurements showed considerable decreases in evapotranspiration (ET), transpiration (T), and leaf area index (LAI) during the two-year infestation period compared to the pre-infestation period. Model interpretations of observed water and carbon fluxes indicated that the overall reductions in T were not solely due to decreased LAI, but also to changes in physiological behaviours. The summer season's canopy-scale stomatal conductance was significantly reduced during the infestation period, from 0.0018 to 0.0011 m s(-1). One primary reason for the observed variations is likely that the bark beetle infestation hampers the water transport in the xylem. The damage of xylem has important implications for water use efficiency (WUE), which also significantly influences the parameterization of stomatal conductance. When using stomatal conductance models to forecast ecosystem dynamics, it is crucial to recalibrate the model's parameters to ensure the accurate depiction of stomatal dynamics during various infestation periods. The neglect of the temporal variability of canopy-scale stomatal conductance under ecosystem disturbances (e.g., bark beetle infestations) in current earth system models, therefore, requires specific attention in assessments of large-scale water and carbon balances. By comparing the simulation accuracy of stomatal conductance and transpiration under an evolution-varied parameterization (considering all infestation stages) and a pre-infestation-fixed parameterization (considering undisturbed conditions) of three stomatal conductance models (Ball-Berry, Leuning, and Medlyn model), the impact of bark beetle infestation was identified. The findings highlight that the overall transpiration reduction was not only caused by reduced LAI, but also by changing physiological behaviour, which was neglected by all current models. image
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GN22-20422O" target="_blank" >GN22-20422O: Úmrtnost stromů způsobená hmyzem při změně klimatu - dopady na hydrologii a geochemii napříč měřítky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Hydrological Processes
ISSN
0885-6087
e-ISSN
1099-1085
Svazek periodika
38
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
e15162
Kód UT WoS článku
001226374400001
EID výsledku v databázi Scopus
2-s2.0-85193520230