Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evidence of field-scale shifts in transpiration dynamics following bark beetle infestation: Stomatal conductance responses

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10481166" target="_blank" >RIV/00216208:11310/24:10481166 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BCbtv-gpDy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BCbtv-gpDy</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/hyp.15162" target="_blank" >10.1002/hyp.15162</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evidence of field-scale shifts in transpiration dynamics following bark beetle infestation: Stomatal conductance responses

  • Popis výsledku v původním jazyce

    Amplified eruptive outbreaks of bark beetles as a consequence of climate change can cause tree mortality that significantly affects terrestrial water and carbon fluxes. However, the lack of field-scale observations of underlying physiological mechanisms currently hampers the expression of such ecosystem disturbances in predictive modelling. Based on a unique flux tower dataset from a subalpine forest located in the Rocky Mountains, mechanisms of stomatal response to an extensive bark beetle outbreak were investigated using various models and parametrizations. The datasets cover a decade, including the periods of pre-infestation, infestation, and post-infestation. Field measurements showed considerable decreases in evapotranspiration (ET), transpiration (T), and leaf area index (LAI) during the two-year infestation period compared to the pre-infestation period. Model interpretations of observed water and carbon fluxes indicated that the overall reductions in T were not solely due to decreased LAI, but also to changes in physiological behaviours. The summer season&apos;s canopy-scale stomatal conductance was significantly reduced during the infestation period, from 0.0018 to 0.0011 m s(-1). One primary reason for the observed variations is likely that the bark beetle infestation hampers the water transport in the xylem. The damage of xylem has important implications for water use efficiency (WUE), which also significantly influences the parameterization of stomatal conductance. When using stomatal conductance models to forecast ecosystem dynamics, it is crucial to recalibrate the model&apos;s parameters to ensure the accurate depiction of stomatal dynamics during various infestation periods. The neglect of the temporal variability of canopy-scale stomatal conductance under ecosystem disturbances (e.g., bark beetle infestations) in current earth system models, therefore, requires specific attention in assessments of large-scale water and carbon balances. By comparing the simulation accuracy of stomatal conductance and transpiration under an evolution-varied parameterization (considering all infestation stages) and a pre-infestation-fixed parameterization (considering undisturbed conditions) of three stomatal conductance models (Ball-Berry, Leuning, and Medlyn model), the impact of bark beetle infestation was identified. The findings highlight that the overall transpiration reduction was not only caused by reduced LAI, but also by changing physiological behaviour, which was neglected by all current models. image

  • Název v anglickém jazyce

    Evidence of field-scale shifts in transpiration dynamics following bark beetle infestation: Stomatal conductance responses

  • Popis výsledku anglicky

    Amplified eruptive outbreaks of bark beetles as a consequence of climate change can cause tree mortality that significantly affects terrestrial water and carbon fluxes. However, the lack of field-scale observations of underlying physiological mechanisms currently hampers the expression of such ecosystem disturbances in predictive modelling. Based on a unique flux tower dataset from a subalpine forest located in the Rocky Mountains, mechanisms of stomatal response to an extensive bark beetle outbreak were investigated using various models and parametrizations. The datasets cover a decade, including the periods of pre-infestation, infestation, and post-infestation. Field measurements showed considerable decreases in evapotranspiration (ET), transpiration (T), and leaf area index (LAI) during the two-year infestation period compared to the pre-infestation period. Model interpretations of observed water and carbon fluxes indicated that the overall reductions in T were not solely due to decreased LAI, but also to changes in physiological behaviours. The summer season&apos;s canopy-scale stomatal conductance was significantly reduced during the infestation period, from 0.0018 to 0.0011 m s(-1). One primary reason for the observed variations is likely that the bark beetle infestation hampers the water transport in the xylem. The damage of xylem has important implications for water use efficiency (WUE), which also significantly influences the parameterization of stomatal conductance. When using stomatal conductance models to forecast ecosystem dynamics, it is crucial to recalibrate the model&apos;s parameters to ensure the accurate depiction of stomatal dynamics during various infestation periods. The neglect of the temporal variability of canopy-scale stomatal conductance under ecosystem disturbances (e.g., bark beetle infestations) in current earth system models, therefore, requires specific attention in assessments of large-scale water and carbon balances. By comparing the simulation accuracy of stomatal conductance and transpiration under an evolution-varied parameterization (considering all infestation stages) and a pre-infestation-fixed parameterization (considering undisturbed conditions) of three stomatal conductance models (Ball-Berry, Leuning, and Medlyn model), the impact of bark beetle infestation was identified. The findings highlight that the overall transpiration reduction was not only caused by reduced LAI, but also by changing physiological behaviour, which was neglected by all current models. image

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GN22-20422O" target="_blank" >GN22-20422O: Úmrtnost stromů způsobená hmyzem při změně klimatu - dopady na hydrologii a geochemii napříč měřítky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Hydrological Processes

  • ISSN

    0885-6087

  • e-ISSN

    1099-1085

  • Svazek periodika

    38

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    20

  • Strana od-do

    e15162

  • Kód UT WoS článku

    001226374400001

  • EID výsledku v databázi Scopus

    2-s2.0-85193520230