Decoding (urban) form and function using spatially explicit deep learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10483562" target="_blank" >RIV/00216208:11310/24:10483562 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6T_LVou94i" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6T_LVou94i</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compenvurbsys.2024.102147" target="_blank" >10.1016/j.compenvurbsys.2024.102147</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decoding (urban) form and function using spatially explicit deep learning
Popis výsledku v původním jazyce
This paper explores how can geographical dimension be incorporated into deep learning designed to understand the composition of urban landscapes based on Sentinel 2 satellite imagery. Compared to standard computer vision, satellite imagery is unique as images sampled from the data form a continuous array, rather than being fully independent. We argue that the spatial configuration of the images is as important as the content of each image when attempting to capture a pattern that reflects the structure of the urban environment. We propose a series of approaches explicitly incorporating spatial dimension in the predictive pipeline based on the EfficientNetB4 convolutional neural network (CNN) and experimentally test their effect on model performance. The experiments in this study cover the scale of the sampled area, the effect of spatial augmentation, and the role of modelling (logit ensemble and histogram-based gradient-boosted classifiers) with and without the spatial context on the outputs of the neural network-generated vector of probabilities while trying to predict spatial signatures, a classification of primarily urban landscape based on form and function. The results suggest that certain ways of embedding spatial information, especially in the modelling step, consistently significantly improve the prediction accuracy and shall be considered on top of standard CNNs.
Název v anglickém jazyce
Decoding (urban) form and function using spatially explicit deep learning
Popis výsledku anglicky
This paper explores how can geographical dimension be incorporated into deep learning designed to understand the composition of urban landscapes based on Sentinel 2 satellite imagery. Compared to standard computer vision, satellite imagery is unique as images sampled from the data form a continuous array, rather than being fully independent. We argue that the spatial configuration of the images is as important as the content of each image when attempting to capture a pattern that reflects the structure of the urban environment. We propose a series of approaches explicitly incorporating spatial dimension in the predictive pipeline based on the EfficientNetB4 convolutional neural network (CNN) and experimentally test their effect on model performance. The experiments in this study cover the scale of the sampled area, the effect of spatial augmentation, and the role of modelling (logit ensemble and histogram-based gradient-boosted classifiers) with and without the spatial context on the outputs of the neural network-generated vector of probabilities while trying to predict spatial signatures, a classification of primarily urban landscape based on form and function. The results suggest that certain ways of embedding spatial information, especially in the modelling step, consistently significantly improve the prediction accuracy and shall be considered on top of standard CNNs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50701 - Cultural and economic geography
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers, Environment and Urban Systems
ISSN
0198-9715
e-ISSN
1873-7587
Svazek periodika
112
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
23
Strana od-do
102147
Kód UT WoS článku
001271704800001
EID výsledku v databázi Scopus
2-s2.0-85198291248