People Detection Using Artificial Intelligence with Panchromatic Satellite Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255675" target="_blank" >RIV/61989100:27240/24:10255675 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27350/24:10255675
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/14/18/8555" target="_blank" >https://www.mdpi.com/2076-3417/14/18/8555</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app14188555" target="_blank" >10.3390/app14188555</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
People Detection Using Artificial Intelligence with Panchromatic Satellite Images
Popis výsledku v původním jazyce
The detection of people in urban environments from satellite imagery can be employed in a variety of applications, such as urban planning, business management, crisis management, military operations, and security. A WorldView-3 satellite image of Prague was processed. Several variants of feature-extracting networks, referred to as backbone networks, were tested alongside the Faster R-CNN model. This model combines region proposal networks with object detection, offering a balance between speed and accuracy that is well suited for dense and varied urban environments. Data augmentation was used to increase the robustness of the models, which contributed to the improvement of classification results. Achieving a high level of accuracy is an ongoing challenge due to the low spatial resolution of available imagery. An F1 score of 54% was achieved using data augmentation, a 15 cm buffer, and a maximum distance limit of 60 cm. (C) 2024 by the authors.
Název v anglickém jazyce
People Detection Using Artificial Intelligence with Panchromatic Satellite Images
Popis výsledku anglicky
The detection of people in urban environments from satellite imagery can be employed in a variety of applications, such as urban planning, business management, crisis management, military operations, and security. A WorldView-3 satellite image of Prague was processed. Several variants of feature-extracting networks, referred to as backbone networks, were tested alongside the Faster R-CNN model. This model combines region proposal networks with object detection, offering a balance between speed and accuracy that is well suited for dense and varied urban environments. Data augmentation was used to increase the robustness of the models, which contributed to the improvement of classification results. Achieving a high level of accuracy is an ongoing challenge due to the low spatial resolution of available imagery. An F1 score of 54% was achieved using data augmentation, a 15 cm buffer, and a maximum distance limit of 60 cm. (C) 2024 by the authors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
001323310900001
EID výsledku v databázi Scopus
2-s2.0-85205293744