Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Landslide Susceptibility in Turkish Northewesternmost Sector: Distinctive Patterns of Inactive and Active Landslides

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10486368" target="_blank" >RIV/00216208:11310/24:10486368 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-981-99-9061-0_44" target="_blank" >https://doi.org/10.1007/978-981-99-9061-0_44</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-99-9061-0_44" target="_blank" >10.1007/978-981-99-9061-0_44</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Landslide Susceptibility in Turkish Northewesternmost Sector: Distinctive Patterns of Inactive and Active Landslides

  • Popis výsledku v původním jazyce

    The Western Pontides, an active neo-tectonic region in Northwestern Turkey, are particularly rich in slope movements. Here, data-driven modelling is challenging owing to a prominent variability in geological and geomorphological features, which hinders a straightforward comprehension of ongoing and past processes. Statistical models can indeed be used to recognise portions of the landscape that are more susceptible to landslides, whereas inferring possible causation from spatial correlations with a number of other spatial characteristics typically requires knowledge of triggers and mechanisms. Here, we present results that we obtained using a dataset of active and relict landslides in the Western Pontides, for which we produced two distinct landslide susceptibility models. We subdivided the area in slope units, chich are geomorphologically consistent, and worked in R-INLA with a Bayesian version of binomial Generalised Additive Model. By doing so, we were able to evaluate the effect of the variables in the two models and identify effects of geomorphological factors that depend on the state of activity. Furthermore, we could describe and compare linearities and nonlinearities to better capture differences in spatial patterns possibly related to distinct triggers. We argue that our approach may also serve to assess the reliability of an inventory classification, as the presence of biases would make the emergence of distinctive patterns less likely.

  • Název v anglickém jazyce

    Landslide Susceptibility in Turkish Northewesternmost Sector: Distinctive Patterns of Inactive and Active Landslides

  • Popis výsledku anglicky

    The Western Pontides, an active neo-tectonic region in Northwestern Turkey, are particularly rich in slope movements. Here, data-driven modelling is challenging owing to a prominent variability in geological and geomorphological features, which hinders a straightforward comprehension of ongoing and past processes. Statistical models can indeed be used to recognise portions of the landscape that are more susceptible to landslides, whereas inferring possible causation from spatial correlations with a number of other spatial characteristics typically requires knowledge of triggers and mechanisms. Here, we present results that we obtained using a dataset of active and relict landslides in the Western Pontides, for which we produced two distinct landslide susceptibility models. We subdivided the area in slope units, chich are geomorphologically consistent, and worked in R-INLA with a Bayesian version of binomial Generalised Additive Model. By doing so, we were able to evaluate the effect of the variables in the two models and identify effects of geomorphological factors that depend on the state of activity. Furthermore, we could describe and compare linearities and nonlinearities to better capture differences in spatial patterns possibly related to distinct triggers. We argue that our approach may also serve to assess the reliability of an inventory classification, as the presence of biases would make the emergence of distinctive patterns less likely.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10505 - Geology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Engineering Geology for a Habitable Earth: IAEG XIV Congress 2023 Proceedings Vol. 2

  • ISBN

    978-981-9990-60-3

  • ISSN

    1863-5520

  • e-ISSN

    1863-5539

  • Počet stran výsledku

    16

  • Strana od-do

    613-628

  • Název nakladatele

    Springer - Verlag Singapore PTE Ltd

  • Místo vydání

    Singapore

  • Místo konání akce

    Chengdu, China

  • Datum konání akce

    21. 9. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001315804700044