A benchmark dataset and workflow for landslide susceptibility zonation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F24%3A00599857" target="_blank" >RIV/67985891:_____/24:00599857 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/24:10486353
Výsledek na webu
<a href="https://doi.org/10.1016/j.earscirev.2024.104927" target="_blank" >https://doi.org/10.1016/j.earscirev.2024.104927</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.earscirev.2024.104927" target="_blank" >10.1016/j.earscirev.2024.104927</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A benchmark dataset and workflow for landslide susceptibility zonation
Popis výsledku v původním jazyce
Landslide susceptibility shows the spatial likelihood of landslide occurrence in a specific geographical area and is a relevant tool for mitigating the impact of landslides worldwide. As such, it is the subject of countless scientific studies. Many methods exist for generating a susceptibility map, mostly falling under the definition of statistical or machine learning. These models try to solve a classification problem: given a collection of spatial variables, and their combination associated with landslide presence or absence, a model should be trained, tested to reproduce the target outcome, and eventually applied to unseen data.nContrary to many fields of science that use machine learning for specific tasks, no reference data exist to assess the performance of a given method for landslide susceptibility. Here, we propose a benchmark dataset consistingnof 7360 slope units encompassing an area of about 4, 100 km2 in Central Italy. Using the dataset, we tried to answer two open questions in landslide research: (1) what effect does the human variability have in creating susceptibility models,(2) how can we develop a reproducible workflow for allowing meaningful model comparisons within the landslide susceptibility research community.
Název v anglickém jazyce
A benchmark dataset and workflow for landslide susceptibility zonation
Popis výsledku anglicky
Landslide susceptibility shows the spatial likelihood of landslide occurrence in a specific geographical area and is a relevant tool for mitigating the impact of landslides worldwide. As such, it is the subject of countless scientific studies. Many methods exist for generating a susceptibility map, mostly falling under the definition of statistical or machine learning. These models try to solve a classification problem: given a collection of spatial variables, and their combination associated with landslide presence or absence, a model should be trained, tested to reproduce the target outcome, and eventually applied to unseen data.nContrary to many fields of science that use machine learning for specific tasks, no reference data exist to assess the performance of a given method for landslide susceptibility. Here, we propose a benchmark dataset consistingnof 7360 slope units encompassing an area of about 4, 100 km2 in Central Italy. Using the dataset, we tried to answer two open questions in landslide research: (1) what effect does the human variability have in creating susceptibility models,(2) how can we develop a reproducible workflow for allowing meaningful model comparisons within the landslide susceptibility research community.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Earth-Science Reviews
ISSN
0012-8252
e-ISSN
1872-6828
Svazek periodika
258
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
26
Strana od-do
104927
Kód UT WoS článku
001334306900001
EID výsledku v databázi Scopus
2-s2.0-85204051068