Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250021" target="_blank" >RIV/61989100:27240/22:10250021 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2072-4292/14/13/3029" target="_blank" >https://www.mdpi.com/2072-4292/14/13/3029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs14133029" target="_blank" >10.3390/rs14133029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey
Popis výsledku v původním jazyce
Landslide is a devastating natural disaster, causing loss of life and property. It is likely to occur more frequently due to increasing urbanization, deforestation, and climate change. Landslide susceptibility mapping is vital to safeguard life and property. This article surveys machine learning (ML) models used for landslide susceptibility mapping to understand the current trend by analyzing published articles based on the ML models, landslide causative factors (LCFs), study location, datasets, evaluation methods, and model performance. Existing literature considered in this comprehensive survey is systematically selected using the ROSES protocol. The trend indicates a growing interest in the field. The choice of LCFs depends on data availability and case study location; China is the most studied location, and area under the receiver operating characteristic curve (AUC) is considered the best evaluation metric. Many ML models have achieved an AUC value > 0.90, indicating high reliability of the susceptibility map generated. This paper also discusses the recently developed hybrid, ensemble, and deep learning (DL) models in landslide susceptibility mapping. Generally, hybrid, ensemble, and DL models outperform conventional ML models. Based on the survey, a few recommendations and future works which may help the new researchers in the field are also presented.
Název v anglickém jazyce
Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey
Popis výsledku anglicky
Landslide is a devastating natural disaster, causing loss of life and property. It is likely to occur more frequently due to increasing urbanization, deforestation, and climate change. Landslide susceptibility mapping is vital to safeguard life and property. This article surveys machine learning (ML) models used for landslide susceptibility mapping to understand the current trend by analyzing published articles based on the ML models, landslide causative factors (LCFs), study location, datasets, evaluation methods, and model performance. Existing literature considered in this comprehensive survey is systematically selected using the ROSES protocol. The trend indicates a growing interest in the field. The choice of LCFs depends on data availability and case study location; China is the most studied location, and area under the receiver operating characteristic curve (AUC) is considered the best evaluation metric. Many ML models have achieved an AUC value > 0.90, indicating high reliability of the susceptibility map generated. This paper also discusses the recently developed hybrid, ensemble, and deep learning (DL) models in landslide susceptibility mapping. Generally, hybrid, ensemble, and DL models outperform conventional ML models. Based on the survey, a few recommendations and future works which may help the new researchers in the field are also presented.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
48
Strana od-do
nestrankovano
Kód UT WoS článku
000824449100001
EID výsledku v databázi Scopus
2-s2.0-85133289824