Landslide susceptibility mapping with the fusion of multi-feature SVM model based FCM sampling strategy: A case study from Shaanxi Province
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00122321" target="_blank" >RIV/00216224:14310/21:00122321 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1080/19479832.2021.1961316" target="_blank" >https://doi.org/10.1080/19479832.2021.1961316</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/19479832.2021.1961316" target="_blank" >10.1080/19479832.2021.1961316</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Landslide susceptibility mapping with the fusion of multi-feature SVM model based FCM sampling strategy: A case study from Shaanxi Province
Popis výsledku v původním jazyce
The quality of "non-landslide' samples data impacts the accuracy of geological hazard risk assessment. This research proposed a method to improve the performance of support vector machine (SVM) by perfecting the quality of `non-landslide' samples in the landslide susceptibility evaluation model through fuzzy c-means (FCM) cluster to generate more reliable susceptibility maps. Firstly, three sample selection scenarios for `non-landslide' samples include the following principles: 1) select randomly from low-slope areas (scenario-SS), 2) select randomly from areas with no hazards (scenarioRS), 3) obtain samples from the optimal FCM model (scenario-FCM), and then three sample scenarios are constructed with 10,193 landslide positive samples. Next, we have compared and evaluated the performance of three sample scenarios in the SVM models based on the statistical indicators such as the proportion of disaster points, density of disaster points precision, receiver operating characteristic (ROC) curve, and area under the ROC curve (AUC). Finally, The evaluation results show that the `non-landslide' negative samples based on the FCM model are more reasonable. Furthermore, the hybrid method supported by SVM and FCM models exhibits the highest prediction efficiency. Scenario FCM produces an overall accuracy of approximately 89.7% (AUC), followed by scenario-SS (86.7%) and scenario-RS (85.6%).
Název v anglickém jazyce
Landslide susceptibility mapping with the fusion of multi-feature SVM model based FCM sampling strategy: A case study from Shaanxi Province
Popis výsledku anglicky
The quality of "non-landslide' samples data impacts the accuracy of geological hazard risk assessment. This research proposed a method to improve the performance of support vector machine (SVM) by perfecting the quality of `non-landslide' samples in the landslide susceptibility evaluation model through fuzzy c-means (FCM) cluster to generate more reliable susceptibility maps. Firstly, three sample selection scenarios for `non-landslide' samples include the following principles: 1) select randomly from low-slope areas (scenario-SS), 2) select randomly from areas with no hazards (scenarioRS), 3) obtain samples from the optimal FCM model (scenario-FCM), and then three sample scenarios are constructed with 10,193 landslide positive samples. Next, we have compared and evaluated the performance of three sample scenarios in the SVM models based on the statistical indicators such as the proportion of disaster points, density of disaster points precision, receiver operating characteristic (ROC) curve, and area under the ROC curve (AUC). Finally, The evaluation results show that the `non-landslide' negative samples based on the FCM model are more reasonable. Furthermore, the hybrid method supported by SVM and FCM models exhibits the highest prediction efficiency. Scenario FCM produces an overall accuracy of approximately 89.7% (AUC), followed by scenario-SS (86.7%) and scenario-RS (85.6%).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Image and Data Fusion
ISSN
1947-9832
e-ISSN
1947-9824
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
349-366
Kód UT WoS článku
000684463600001
EID výsledku v databázi Scopus
2-s2.0-85112263160