How to Find Accurate Terrain and Canopy Height GEDI Footprints in Temperate Forests and Grasslands?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10486646" target="_blank" >RIV/00216208:11310/24:10486646 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985939:_____/24:00601030 RIV/60460709:41330/24:100310
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ymi8DQx_r-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ymi8DQx_r-</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2024EA003709" target="_blank" >10.1029/2024EA003709</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How to Find Accurate Terrain and Canopy Height GEDI Footprints in Temperate Forests and Grasslands?
Popis výsledku v původním jazyce
Filtering approaches on Global Ecosystem Dynamics Investigation (GEDI) data differconsiderably across existing studies and it is yet unclear which method is the most effective. We conducted anin-depth analysis of GEDI's vertical accuracy in mapping terrain and canopy heights across three study sites intemperate forests and grasslands in Spain, California, and New Zealand. We started with unfiltered data (2,081,108 footprints) and describe a workflow for data filtering using Level 2A parameters and for geolocationerror mitigation. We found that retaining observations with at least one detected mode eliminates noise moreeffectively than sensitivity. The accuracy of terrain and canopy height observations depended considerably onthe number of modes, beam sensitivity, landcover, and terrain slope. In dense forests, a minimum sensitivity of 0.9 was required, while in areas with sparse vegetation, sensitivity of 0.5 sufficed. Sensitivity greater than 0.9 resulted in an overestimation of canopy height in grasslands, especially on steep slopes, where high sensitivityled to the detection of multiple modes. We suggest excluding observations with more than five modes ingrasslands. We found that the most effective strategy for filtering low-quality observations was to combine thequality flag and difference from TanDEM-X, striking an optimal balance between eliminating poor-quality dataand preserving a maximum number of high-quality observations. Positional shifts improved the accuracy of GEDI terrain estimates but not of vegetation height estimates. Our findings guide users to an easy way ofprocessing of GEDI footprints, enabling the use of the most accurate data and leading to more reliable applications.
Název v anglickém jazyce
How to Find Accurate Terrain and Canopy Height GEDI Footprints in Temperate Forests and Grasslands?
Popis výsledku anglicky
Filtering approaches on Global Ecosystem Dynamics Investigation (GEDI) data differconsiderably across existing studies and it is yet unclear which method is the most effective. We conducted anin-depth analysis of GEDI's vertical accuracy in mapping terrain and canopy heights across three study sites intemperate forests and grasslands in Spain, California, and New Zealand. We started with unfiltered data (2,081,108 footprints) and describe a workflow for data filtering using Level 2A parameters and for geolocationerror mitigation. We found that retaining observations with at least one detected mode eliminates noise moreeffectively than sensitivity. The accuracy of terrain and canopy height observations depended considerably onthe number of modes, beam sensitivity, landcover, and terrain slope. In dense forests, a minimum sensitivity of 0.9 was required, while in areas with sparse vegetation, sensitivity of 0.5 sufficed. Sensitivity greater than 0.9 resulted in an overestimation of canopy height in grasslands, especially on steep slopes, where high sensitivityled to the detection of multiple modes. We suggest excluding observations with more than five modes ingrasslands. We found that the most effective strategy for filtering low-quality observations was to combine thequality flag and difference from TanDEM-X, striking an optimal balance between eliminating poor-quality dataand preserving a maximum number of high-quality observations. Positional shifts improved the accuracy of GEDI terrain estimates but not of vegetation height estimates. Our findings guide users to an easy way ofprocessing of GEDI footprints, enabling the use of the most accurate data and leading to more reliable applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/SS02030018" target="_blank" >SS02030018: Centrum pro krajinu a biodiverzitu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Earth and Space Science
ISSN
2333-5084
e-ISSN
2333-5084
Svazek periodika
11
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
26
Strana od-do
e2024EA003709
Kód UT WoS článku
001368252700001
EID výsledku v databázi Scopus
2-s2.0-85207567649