Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

How to Find Accurate Terrain and Canopy Height GEDI Footprints in Temperate Forests and Grasslands?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10486646" target="_blank" >RIV/00216208:11310/24:10486646 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985939:_____/24:00601030 RIV/60460709:41330/24:100310

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ymi8DQx_r-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ymi8DQx_r-</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2024EA003709" target="_blank" >10.1029/2024EA003709</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    How to Find Accurate Terrain and Canopy Height GEDI Footprints in Temperate Forests and Grasslands?

  • Popis výsledku v původním jazyce

    Filtering approaches on Global Ecosystem Dynamics Investigation (GEDI) data differconsiderably across existing studies and it is yet unclear which method is the most effective. We conducted anin-depth analysis of GEDI&apos;s vertical accuracy in mapping terrain and canopy heights across three study sites intemperate forests and grasslands in Spain, California, and New Zealand. We started with unfiltered data (2,081,108 footprints) and describe a workflow for data filtering using Level 2A parameters and for geolocationerror mitigation. We found that retaining observations with at least one detected mode eliminates noise moreeffectively than sensitivity. The accuracy of terrain and canopy height observations depended considerably onthe number of modes, beam sensitivity, landcover, and terrain slope. In dense forests, a minimum sensitivity of 0.9 was required, while in areas with sparse vegetation, sensitivity of 0.5 sufficed. Sensitivity greater than 0.9 resulted in an overestimation of canopy height in grasslands, especially on steep slopes, where high sensitivityled to the detection of multiple modes. We suggest excluding observations with more than five modes ingrasslands. We found that the most effective strategy for filtering low-quality observations was to combine thequality flag and difference from TanDEM-X, striking an optimal balance between eliminating poor-quality dataand preserving a maximum number of high-quality observations. Positional shifts improved the accuracy of GEDI terrain estimates but not of vegetation height estimates. Our findings guide users to an easy way ofprocessing of GEDI footprints, enabling the use of the most accurate data and leading to more reliable applications.

  • Název v anglickém jazyce

    How to Find Accurate Terrain and Canopy Height GEDI Footprints in Temperate Forests and Grasslands?

  • Popis výsledku anglicky

    Filtering approaches on Global Ecosystem Dynamics Investigation (GEDI) data differconsiderably across existing studies and it is yet unclear which method is the most effective. We conducted anin-depth analysis of GEDI&apos;s vertical accuracy in mapping terrain and canopy heights across three study sites intemperate forests and grasslands in Spain, California, and New Zealand. We started with unfiltered data (2,081,108 footprints) and describe a workflow for data filtering using Level 2A parameters and for geolocationerror mitigation. We found that retaining observations with at least one detected mode eliminates noise moreeffectively than sensitivity. The accuracy of terrain and canopy height observations depended considerably onthe number of modes, beam sensitivity, landcover, and terrain slope. In dense forests, a minimum sensitivity of 0.9 was required, while in areas with sparse vegetation, sensitivity of 0.5 sufficed. Sensitivity greater than 0.9 resulted in an overestimation of canopy height in grasslands, especially on steep slopes, where high sensitivityled to the detection of multiple modes. We suggest excluding observations with more than five modes ingrasslands. We found that the most effective strategy for filtering low-quality observations was to combine thequality flag and difference from TanDEM-X, striking an optimal balance between eliminating poor-quality dataand preserving a maximum number of high-quality observations. Positional shifts improved the accuracy of GEDI terrain estimates but not of vegetation height estimates. Our findings guide users to an easy way ofprocessing of GEDI footprints, enabling the use of the most accurate data and leading to more reliable applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/SS02030018" target="_blank" >SS02030018: Centrum pro krajinu a biodiverzitu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Earth and Space Science

  • ISSN

    2333-5084

  • e-ISSN

    2333-5084

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    26

  • Strana od-do

    e2024EA003709

  • Kód UT WoS článku

    001368252700001

  • EID výsledku v databázi Scopus

    2-s2.0-85207567649