Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Low degree connectivity in ad-hoc networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F05%3A00206154" target="_blank" >RIV/00216208:11320/05:00206154 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Low degree connectivity in ad-hoc networks

  • Popis výsledku v původním jazyce

    The aim of the paper is to investigate the average case behavior of certain algorithms that are designed for connecting mobile agents in the two- or three-dimensional space. The general model is the following: let $X$ be a set of points in the $d$-dimensional Euclidean space $E_d$, $dge 2$, $r$ be a function that associates each element of $xin X$ with a positive real number $r(x)$. A graph $G(X,r)$ is an oriented graph with the vertex set $X$, in which $(x,y)$ is an edge if and only if $rho(x,y)ler(x)$, where $rho(x,y)$ denotes the Euclidean distance in the space $E_d$. Given a set $X$, the goal is to find a function $r$ so that the graph $G(X,r)$ is strongly connected (note that the graph $G(X,r)$ need not be symmetric). The function $r$ computed by the algorithm of the present paper is such that, given a random set $X$ of points, the average value of $r(x)^d$ (related to the average transmitter power) is almost surely constant.

  • Název v anglickém jazyce

    Low degree connectivity in ad-hoc networks

  • Popis výsledku anglicky

    The aim of the paper is to investigate the average case behavior of certain algorithms that are designed for connecting mobile agents in the two- or three-dimensional space. The general model is the following: let $X$ be a set of points in the $d$-dimensional Euclidean space $E_d$, $dge 2$, $r$ be a function that associates each element of $xin X$ with a positive real number $r(x)$. A graph $G(X,r)$ is an oriented graph with the vertex set $X$, in which $(x,y)$ is an edge if and only if $rho(x,y)ler(x)$, where $rho(x,y)$ denotes the Euclidean distance in the space $E_d$. Given a set $X$, the goal is to find a function $r$ so that the graph $G(X,r)$ is strongly connected (note that the graph $G(X,r)$ need not be symmetric). The function $r$ computed by the algorithm of the present paper is such that, given a random set $X$ of points, the average value of $r(x)^d$ (related to the average transmitter power) is almost surely constant.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2005

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Algorithms - ESA 2005

  • ISBN

    3-540-29118-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Berlin

  • Datum konání akce

    1. 1. 2005

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000233893100020