Využití LSI a M-stromu při indexování a vyhledávání obrázků
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F06%3A00005346" target="_blank" >RIV/00216208:11320/06:00005346 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Application of LSI and M-tree in Image Retrieval
Popis výsledku v původním jazyce
When dealing with image databases, we often need to solve the problem of how to retrieve a desired set of images effectively and efficiently. As a representation of images, there are commonly used some high-dimensional vectors of extracted features, since in such a way the content-based image retrieval is turned into a geometric-search problem. In this article we present a study of feature extraction from raw image data by means of the LSI method (singular-value decomposition, respectively). Simultaneously, we show how such a kind of feature extraction can be used for efficient and effective similarity retrieval using the M-tree index. Because of the application to image retrieval, we also show some interesting effects of LSI, which are not directly obvious in the area of text retrieval (where LSI came from).
Název v anglickém jazyce
An Application of LSI and M-tree in Image Retrieval
Popis výsledku anglicky
When dealing with image databases, we often need to solve the problem of how to retrieve a desired set of images effectively and efficiently. As a representation of images, there are commonly used some high-dimensional vectors of extracted features, since in such a way the content-based image retrieval is turned into a geometric-search problem. In this article we present a study of feature extraction from raw image data by means of the LSI method (singular-value decomposition, respectively). Simultaneously, we show how such a kind of feature extraction can be used for efficient and effective similarity retrieval using the M-tree index. Because of the application to image retrieval, we also show some interesting effects of LSI, which are not directly obvious in the area of text retrieval (where LSI came from).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GP201%2F05%2FP036" target="_blank" >GP201/05/P036: Efektivní metrické vyhledávání v rozsáhlých multimediálních databázích</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
GESTS International Transaction on Computer Science and Engineering
ISSN
1738-6438
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
212-223
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—