The Gilbert equation with dry-friction-type damping
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00207180" target="_blank" >RIV/00216208:11320/09:00207180 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388998:_____/09:00323011
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Gilbert equation with dry-friction-type damping
Popis výsledku v původním jazyce
A modified Gilbert equation for micromagnetics is considered, obtained by augmenting the standard viscous-like dissipation with a rate-independent term. We prove existence of a weak solution both with and without viscous dissipation. By scaling time we show that, if the applied field varies very slowly, then gyromagnetic effects and viscous dissipation become negligible. In the infinitesimally-slow-loading limit, the system thus becomes fully rate-independent. (c) 2009 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
The Gilbert equation with dry-friction-type damping
Popis výsledku anglicky
A modified Gilbert equation for micromagnetics is considered, obtained by augmenting the standard viscous-like dissipation with a rate-independent term. We prove existence of a weak solution both with and without viscous dissipation. By scaling time we show that, if the applied field varies very slowly, then gyromagnetic effects and viscous dissipation become negligible. In the infinitesimally-slow-loading limit, the system thus becomes fully rate-independent. (c) 2009 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Svazek periodika
355
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000265982800001
EID výsledku v databázi Scopus
—