Rate-independent dissipation in phase-field modelling of displacive transformations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384226" target="_blank" >RIV/00216208:11320/18:10384226 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jmps.2018.02.007" target="_blank" >https://doi.org/10.1016/j.jmps.2018.02.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmps.2018.02.007" target="_blank" >10.1016/j.jmps.2018.02.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rate-independent dissipation in phase-field modelling of displacive transformations
Popis výsledku v původním jazyce
In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.
Název v anglickém jazyce
Rate-independent dissipation in phase-field modelling of displacive transformations
Popis výsledku anglicky
In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the Mechanics and Physics of Solids
ISSN
0022-5096
e-ISSN
—
Svazek periodika
114
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
117-142
Kód UT WoS článku
000433264900007
EID výsledku v databázi Scopus
2-s2.0-85042666748