Vectorized MATLAB Implementation of the Incremental Minimization Principle for Rate-Independent Dissipative Solids Using FEM: A Constitutive Model of Shape Memory Alloys
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F22%3A00566662" target="_blank" >RIV/61388998:_____/22:00566662 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/22:00566662 RIV/68407700:21240/22:00364942
Výsledek na webu
<a href="https://mdpi-res.com/d_attachment/mathematics/mathematics-10-04412/article_deploy/mathematics-10-04412.pdf?version=1669191552" target="_blank" >https://mdpi-res.com/d_attachment/mathematics/mathematics-10-04412/article_deploy/mathematics-10-04412.pdf?version=1669191552</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10234412" target="_blank" >10.3390/math10234412</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Vectorized MATLAB Implementation of the Incremental Minimization Principle for Rate-Independent Dissipative Solids Using FEM: A Constitutive Model of Shape Memory Alloys
Popis výsledku v původním jazyce
The incremental energy minimization principle provides a compact variational formulation for evolutionary boundary problems based on constitutive models of rate-independent dissipative solids. In this work, we develop and implement a versatile computational tool for the resolution of these problems via the finite element method (FEM). The implementation is coded in the MATLAB programming language and benefits from vector operations, allowing all local energy contributions to be evaluated over all degrees of freedom at once. The monolithic solution scheme combined with gradient-based optimization methods is applied to the inherently nonlinear, non-smooth convex minimization problem. An advanced constitutive model for shape memory alloys, which features a strongly coupled rate-independent dissipation function and several constraints on internal variables, is implemented as a benchmark example. Numerical simulations demonstrate the capabilities of the computational tool, which is suited for the rapid development and testing of advanced constitutive laws of rate-independent dissipative solids.
Název v anglickém jazyce
Vectorized MATLAB Implementation of the Incremental Minimization Principle for Rate-Independent Dissipative Solids Using FEM: A Constitutive Model of Shape Memory Alloys
Popis výsledku anglicky
The incremental energy minimization principle provides a compact variational formulation for evolutionary boundary problems based on constitutive models of rate-independent dissipative solids. In this work, we develop and implement a versatile computational tool for the resolution of these problems via the finite element method (FEM). The implementation is coded in the MATLAB programming language and benefits from vector operations, allowing all local energy contributions to be evaluated over all degrees of freedom at once. The monolithic solution scheme combined with gradient-based optimization methods is applied to the inherently nonlinear, non-smooth convex minimization problem. An advanced constitutive model for shape memory alloys, which features a strongly coupled rate-independent dissipation function and several constraints on internal variables, is implemented as a benchmark example. Numerical simulations demonstrate the capabilities of the computational tool, which is suited for the rapid development and testing of advanced constitutive laws of rate-independent dissipative solids.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
10
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
4412
Kód UT WoS článku
000896227200001
EID výsledku v databázi Scopus
2-s2.0-85143582510