On Fuzzy vs. metric similarity search in complex databases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A10109181" target="_blank" >RIV/00216208:11320/09:10109181 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Fuzzy vs. metric similarity search in complex databases
Popis výsledku v původním jazyce
The task of similarity search is widely used in various areas of computing, including multimedia databases, data mining, bioinformatics, social networks, etc. For a long time, the database-oriented applications of similarity search employed the definition of similarity restricted to metric distances. Due to the metric postulates (reflexivity, non-negativity, symmetry and triangle inequality), a metric similarity allows to build a metric index above the database which can be subsequently used for efficient (fast) similarity search. On the other hand, the metric postulates limit the domain experts (providers of the similarity measure) in similarity modeling. In this paper we propose an alternative non-metric method of indexing for efficient similarity search. The requirement on metric is replaced by the requirement on fuzzy similarity satisfying the transitivity property with a tuneable fuzzy conjunctor. We also show a duality between the fuzzy approach and the metric one.
Název v anglickém jazyce
On Fuzzy vs. metric similarity search in complex databases
Popis výsledku anglicky
The task of similarity search is widely used in various areas of computing, including multimedia databases, data mining, bioinformatics, social networks, etc. For a long time, the database-oriented applications of similarity search employed the definition of similarity restricted to metric distances. Due to the metric postulates (reflexivity, non-negativity, symmetry and triangle inequality), a metric similarity allows to build a metric index above the database which can be subsequently used for efficient (fast) similarity search. On the other hand, the metric postulates limit the domain experts (providers of the similarity measure) in similarity modeling. In this paper we propose an alternative non-metric method of indexing for efficient similarity search. The requirement on metric is replaced by the requirement on fuzzy similarity satisfying the transitivity property with a tuneable fuzzy conjunctor. We also show a duality between the fuzzy approach and the metric one.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN
0302-9743
e-ISSN
—
Svazek periodika
2009
Číslo periodika v rámci svazku
5822
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
64-75
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—